Lebesgue measure: $limlimits_{n to infty} n cdot m(S_n)=0$ where $S_n={x in E mid |f(x)|geq n} $











up vote
2
down vote

favorite












Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$



We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.










share|cite|improve this question









New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
    – Martin Sleziak
    2 days ago















up vote
2
down vote

favorite












Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$



We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.










share|cite|improve this question









New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
    – Martin Sleziak
    2 days ago













up vote
2
down vote

favorite









up vote
2
down vote

favorite











Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$



We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.










share|cite|improve this question









New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$



We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.







measure-theory lebesgue-integral lebesgue-measure






share|cite|improve this question









New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Martin Sleziak

44.4k7115268




44.4k7115268






New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Scott Payne

133




133




New contributor




Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Scott Payne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
    – Martin Sleziak
    2 days ago


















  • Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
    – Martin Sleziak
    2 days ago
















Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago




Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago










2 Answers
2






active

oldest

votes

















up vote
3
down vote



accepted










Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$

As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$

where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$

As the LHS is nonnegative, this gives us the desired result.






share|cite|improve this answer




























    up vote
    3
    down vote













    Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.






    share|cite|improve this answer





















    • What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
      – Scott Payne
      2 days ago








    • 1




      Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
      – Dante Grevino
      2 days ago











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015395%2flebesgue-measure-lim-limits-n-to-infty-n-cdot-ms-n-0-where-s-n-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote



    accepted










    Observe that
    $$begin{aligned}
    int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
    &geq int_{S_n} n + int_{E setminus S_n} |f| \
    &= ncdot m(S_n) + int_{E setminus S_n} |f| \
    end{aligned}$$

    As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
    $$begin{aligned}
    ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
    &= int_{S_n} |f| \
    &= int_E |f| chi_{S_n} \
    end{aligned}$$

    where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
    $$begin{aligned}
    lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
    &= int_E lim_{n to infty} |f| chi_{S_n} \
    &= 0
    end{aligned}$$

    As the LHS is nonnegative, this gives us the desired result.






    share|cite|improve this answer

























      up vote
      3
      down vote



      accepted










      Observe that
      $$begin{aligned}
      int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
      &geq int_{S_n} n + int_{E setminus S_n} |f| \
      &= ncdot m(S_n) + int_{E setminus S_n} |f| \
      end{aligned}$$

      As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
      $$begin{aligned}
      ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
      &= int_{S_n} |f| \
      &= int_E |f| chi_{S_n} \
      end{aligned}$$

      where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
      $$begin{aligned}
      lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
      &= int_E lim_{n to infty} |f| chi_{S_n} \
      &= 0
      end{aligned}$$

      As the LHS is nonnegative, this gives us the desired result.






      share|cite|improve this answer























        up vote
        3
        down vote



        accepted







        up vote
        3
        down vote



        accepted






        Observe that
        $$begin{aligned}
        int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
        &geq int_{S_n} n + int_{E setminus S_n} |f| \
        &= ncdot m(S_n) + int_{E setminus S_n} |f| \
        end{aligned}$$

        As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
        $$begin{aligned}
        ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
        &= int_{S_n} |f| \
        &= int_E |f| chi_{S_n} \
        end{aligned}$$

        where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
        $$begin{aligned}
        lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
        &= int_E lim_{n to infty} |f| chi_{S_n} \
        &= 0
        end{aligned}$$

        As the LHS is nonnegative, this gives us the desired result.






        share|cite|improve this answer












        Observe that
        $$begin{aligned}
        int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
        &geq int_{S_n} n + int_{E setminus S_n} |f| \
        &= ncdot m(S_n) + int_{E setminus S_n} |f| \
        end{aligned}$$

        As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
        $$begin{aligned}
        ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
        &= int_{S_n} |f| \
        &= int_E |f| chi_{S_n} \
        end{aligned}$$

        where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
        $$begin{aligned}
        lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
        &= int_E lim_{n to infty} |f| chi_{S_n} \
        &= 0
        end{aligned}$$

        As the LHS is nonnegative, this gives us the desired result.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 days ago









        Bungo

        13.6k22147




        13.6k22147






















            up vote
            3
            down vote













            Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.






            share|cite|improve this answer





















            • What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
              – Scott Payne
              2 days ago








            • 1




              Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
              – Dante Grevino
              2 days ago















            up vote
            3
            down vote













            Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.






            share|cite|improve this answer





















            • What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
              – Scott Payne
              2 days ago








            • 1




              Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
              – Dante Grevino
              2 days ago













            up vote
            3
            down vote










            up vote
            3
            down vote









            Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.






            share|cite|improve this answer












            Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 days ago









            Dante Grevino

            5367




            5367












            • What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
              – Scott Payne
              2 days ago








            • 1




              Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
              – Dante Grevino
              2 days ago


















            • What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
              – Scott Payne
              2 days ago








            • 1




              Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
              – Dante Grevino
              2 days ago
















            What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
            – Scott Payne
            2 days ago






            What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
            – Scott Payne
            2 days ago






            1




            1




            Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
            – Dante Grevino
            2 days ago




            Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
            – Dante Grevino
            2 days ago










            Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.













            Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.












            Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015395%2flebesgue-measure-lim-limits-n-to-infty-n-cdot-ms-n-0-where-s-n-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            If I really need a card on my start hand, how many mulligans make sense? [duplicate]

            Alcedinidae

            Can an atomic nucleus contain both particles and antiparticles? [duplicate]