pandas to_datetime() then concat() on DateTime Index












2














I'm trying to merge 2 DataFrames using concat, on their DateTime Index, but it's not working as I expected. I copied some of this code from the example in the documentation for this example:



import pandas as pd

df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5],
'value': [444,555]})

df.set_index(pd.to_datetime(df.loc[:,['year','month','day']]),inplace=True)

df.drop(['year','month','day'],axis=1,inplace=True)

df2 = pd.DataFrame(data=[222,333],
index=pd.to_datetime(['2015-02-04','2016-03-05']))

pd.concat([df,df2])
Out[1]:
value 0
2015-02-04 444.0 NaN
2016-03-05 555.0 NaN
2015-02-04 NaN 222.0
2016-03-05 NaN 333.0


Why isn't it recognizing the same dates on the index and merging accordingly? I verified that both Indexes are DateTime:



df.index
Out[2]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)

df2.index
Out[3]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)


Thanks.










share|improve this question



























    2














    I'm trying to merge 2 DataFrames using concat, on their DateTime Index, but it's not working as I expected. I copied some of this code from the example in the documentation for this example:



    import pandas as pd

    df = pd.DataFrame({'year': [2015, 2016],
    'month': [2, 3],
    'day': [4, 5],
    'value': [444,555]})

    df.set_index(pd.to_datetime(df.loc[:,['year','month','day']]),inplace=True)

    df.drop(['year','month','day'],axis=1,inplace=True)

    df2 = pd.DataFrame(data=[222,333],
    index=pd.to_datetime(['2015-02-04','2016-03-05']))

    pd.concat([df,df2])
    Out[1]:
    value 0
    2015-02-04 444.0 NaN
    2016-03-05 555.0 NaN
    2015-02-04 NaN 222.0
    2016-03-05 NaN 333.0


    Why isn't it recognizing the same dates on the index and merging accordingly? I verified that both Indexes are DateTime:



    df.index
    Out[2]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)

    df2.index
    Out[3]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)


    Thanks.










    share|improve this question

























      2












      2








      2







      I'm trying to merge 2 DataFrames using concat, on their DateTime Index, but it's not working as I expected. I copied some of this code from the example in the documentation for this example:



      import pandas as pd

      df = pd.DataFrame({'year': [2015, 2016],
      'month': [2, 3],
      'day': [4, 5],
      'value': [444,555]})

      df.set_index(pd.to_datetime(df.loc[:,['year','month','day']]),inplace=True)

      df.drop(['year','month','day'],axis=1,inplace=True)

      df2 = pd.DataFrame(data=[222,333],
      index=pd.to_datetime(['2015-02-04','2016-03-05']))

      pd.concat([df,df2])
      Out[1]:
      value 0
      2015-02-04 444.0 NaN
      2016-03-05 555.0 NaN
      2015-02-04 NaN 222.0
      2016-03-05 NaN 333.0


      Why isn't it recognizing the same dates on the index and merging accordingly? I verified that both Indexes are DateTime:



      df.index
      Out[2]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)

      df2.index
      Out[3]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)


      Thanks.










      share|improve this question













      I'm trying to merge 2 DataFrames using concat, on their DateTime Index, but it's not working as I expected. I copied some of this code from the example in the documentation for this example:



      import pandas as pd

      df = pd.DataFrame({'year': [2015, 2016],
      'month': [2, 3],
      'day': [4, 5],
      'value': [444,555]})

      df.set_index(pd.to_datetime(df.loc[:,['year','month','day']]),inplace=True)

      df.drop(['year','month','day'],axis=1,inplace=True)

      df2 = pd.DataFrame(data=[222,333],
      index=pd.to_datetime(['2015-02-04','2016-03-05']))

      pd.concat([df,df2])
      Out[1]:
      value 0
      2015-02-04 444.0 NaN
      2016-03-05 555.0 NaN
      2015-02-04 NaN 222.0
      2016-03-05 NaN 333.0


      Why isn't it recognizing the same dates on the index and merging accordingly? I verified that both Indexes are DateTime:



      df.index
      Out[2]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)

      df2.index
      Out[3]: DatetimeIndex(['2015-02-04', '2016-03-05'], dtype='datetime64[ns]', freq=None)


      Thanks.







      python pandas datetime






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked May 10 '17 at 15:35









      Josh D

      13413




      13413
























          2 Answers
          2






          active

          oldest

          votes


















          3














          pass axis=1 to concatenate column-wise:



          In [7]:
          pd.concat([df,df2], axis=1)

          Out[7]:
          value 0
          2015-02-04 444 222
          2016-03-05 555 333


          Alternatively you could've joined:



          In [5]:
          df.join(df2)

          Out[5]:
          value 0
          2015-02-04 444 222
          2016-03-05 555 333


          or merged:



          In [8]:
          df.merge(df2, left_index=True, right_index=True)

          Out[8]:
          value 0
          2015-02-04 444 222
          2016-03-05 555 333





          share|improve this answer





























            1














            You need axis=1:



            pd.concat([df,df2], axis=1)


            Output:



                        value    0
            2015-02-04 444 222
            2016-03-05 555 333





            share|improve this answer





















              Your Answer






              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "1"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f43897018%2fpandas-to-datetime-then-concat-on-datetime-index%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3














              pass axis=1 to concatenate column-wise:



              In [7]:
              pd.concat([df,df2], axis=1)

              Out[7]:
              value 0
              2015-02-04 444 222
              2016-03-05 555 333


              Alternatively you could've joined:



              In [5]:
              df.join(df2)

              Out[5]:
              value 0
              2015-02-04 444 222
              2016-03-05 555 333


              or merged:



              In [8]:
              df.merge(df2, left_index=True, right_index=True)

              Out[8]:
              value 0
              2015-02-04 444 222
              2016-03-05 555 333





              share|improve this answer


























                3














                pass axis=1 to concatenate column-wise:



                In [7]:
                pd.concat([df,df2], axis=1)

                Out[7]:
                value 0
                2015-02-04 444 222
                2016-03-05 555 333


                Alternatively you could've joined:



                In [5]:
                df.join(df2)

                Out[5]:
                value 0
                2015-02-04 444 222
                2016-03-05 555 333


                or merged:



                In [8]:
                df.merge(df2, left_index=True, right_index=True)

                Out[8]:
                value 0
                2015-02-04 444 222
                2016-03-05 555 333





                share|improve this answer
























                  3












                  3








                  3






                  pass axis=1 to concatenate column-wise:



                  In [7]:
                  pd.concat([df,df2], axis=1)

                  Out[7]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333


                  Alternatively you could've joined:



                  In [5]:
                  df.join(df2)

                  Out[5]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333


                  or merged:



                  In [8]:
                  df.merge(df2, left_index=True, right_index=True)

                  Out[8]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333





                  share|improve this answer












                  pass axis=1 to concatenate column-wise:



                  In [7]:
                  pd.concat([df,df2], axis=1)

                  Out[7]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333


                  Alternatively you could've joined:



                  In [5]:
                  df.join(df2)

                  Out[5]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333


                  or merged:



                  In [8]:
                  df.merge(df2, left_index=True, right_index=True)

                  Out[8]:
                  value 0
                  2015-02-04 444 222
                  2016-03-05 555 333






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered May 10 '17 at 15:39









                  EdChum

                  170k32359310




                  170k32359310

























                      1














                      You need axis=1:



                      pd.concat([df,df2], axis=1)


                      Output:



                                  value    0
                      2015-02-04 444 222
                      2016-03-05 555 333





                      share|improve this answer


























                        1














                        You need axis=1:



                        pd.concat([df,df2], axis=1)


                        Output:



                                    value    0
                        2015-02-04 444 222
                        2016-03-05 555 333





                        share|improve this answer
























                          1












                          1








                          1






                          You need axis=1:



                          pd.concat([df,df2], axis=1)


                          Output:



                                      value    0
                          2015-02-04 444 222
                          2016-03-05 555 333





                          share|improve this answer












                          You need axis=1:



                          pd.concat([df,df2], axis=1)


                          Output:



                                      value    0
                          2015-02-04 444 222
                          2016-03-05 555 333






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered May 10 '17 at 15:40









                          Scott Boston

                          50.7k72754




                          50.7k72754






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f43897018%2fpandas-to-datetime-then-concat-on-datetime-index%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                              Alcedinidae

                              Origin of the phrase “under your belt”?