Series convergence without sigma notation
up vote
12
down vote
favorite
Consider the following series:
$$frac{1}{1} + frac{10}{2} + frac{100}{3} - frac{37}{4} - frac{37}{5} - frac{37}{6} + frac{1}{7} + frac{10}{8} + frac{100}{9} - frac{37}{10} - frac{37}{11} - frac{37}{12} + dots$$
This series seems to converge but I am not able to prove it. It seems impossible to write thing whole thing into summation notation. I tried to group by modulo 6, but then for example sum of $frac{1}{6n+1}$ diverges already so that doesn't seem right. Also tried to change the 37s into powers of 10 to maybe use the comparison test but also failed.
Any suggestions?
sequences-and-series
add a comment |
up vote
12
down vote
favorite
Consider the following series:
$$frac{1}{1} + frac{10}{2} + frac{100}{3} - frac{37}{4} - frac{37}{5} - frac{37}{6} + frac{1}{7} + frac{10}{8} + frac{100}{9} - frac{37}{10} - frac{37}{11} - frac{37}{12} + dots$$
This series seems to converge but I am not able to prove it. It seems impossible to write thing whole thing into summation notation. I tried to group by modulo 6, but then for example sum of $frac{1}{6n+1}$ diverges already so that doesn't seem right. Also tried to change the 37s into powers of 10 to maybe use the comparison test but also failed.
Any suggestions?
sequences-and-series
Related: 1 and 2
– Mason
Dec 13 at 2:02
add a comment |
up vote
12
down vote
favorite
up vote
12
down vote
favorite
Consider the following series:
$$frac{1}{1} + frac{10}{2} + frac{100}{3} - frac{37}{4} - frac{37}{5} - frac{37}{6} + frac{1}{7} + frac{10}{8} + frac{100}{9} - frac{37}{10} - frac{37}{11} - frac{37}{12} + dots$$
This series seems to converge but I am not able to prove it. It seems impossible to write thing whole thing into summation notation. I tried to group by modulo 6, but then for example sum of $frac{1}{6n+1}$ diverges already so that doesn't seem right. Also tried to change the 37s into powers of 10 to maybe use the comparison test but also failed.
Any suggestions?
sequences-and-series
Consider the following series:
$$frac{1}{1} + frac{10}{2} + frac{100}{3} - frac{37}{4} - frac{37}{5} - frac{37}{6} + frac{1}{7} + frac{10}{8} + frac{100}{9} - frac{37}{10} - frac{37}{11} - frac{37}{12} + dots$$
This series seems to converge but I am not able to prove it. It seems impossible to write thing whole thing into summation notation. I tried to group by modulo 6, but then for example sum of $frac{1}{6n+1}$ diverges already so that doesn't seem right. Also tried to change the 37s into powers of 10 to maybe use the comparison test but also failed.
Any suggestions?
sequences-and-series
sequences-and-series
asked Dec 12 at 21:34
Markus Punnar
1549
1549
Related: 1 and 2
– Mason
Dec 13 at 2:02
add a comment |
Related: 1 and 2
– Mason
Dec 13 at 2:02
Related: 1 and 2
– Mason
Dec 13 at 2:02
Related: 1 and 2
– Mason
Dec 13 at 2:02
add a comment |
3 Answers
3
active
oldest
votes
up vote
13
down vote
accepted
First, notice that $$F_n=frac{1}{6n+1}+frac{10}{6n+2}+frac{100}{6n+3}-frac{37}{6n+4}-frac{37}{6n+5}-frac{37}{6n+6} geq frac{111}{6n+3}-frac{111}{6n+4} > 0.$$
Then, notice that $$F_n leq frac{111}{6n+1}-frac{111}{6n+6}=frac{555}{(6n+1)(6n+6)}.$$
Thus the sum of $F_n$ converges. How can you infer the final result from this?
New contributor
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
add a comment |
up vote
8
down vote
I presume the pattern $(1, 10, 100, -37, -37, -37)$ continues forever, so this is
$$ sum_{n=1}^infty frac{a_n}{n}$$
where $$ a_n = cases{1 & if $n equiv 1 mod 6$cr
10 & if $n equiv 2 mod 6$cr
100 & if $n equiv 3 mod 6$cr
-37 & if $n equiv 4,5$ or $0 mod 6$cr}$$
Note that $1+10+100 - 3times 37 = 0$. Then the $6m$
-th partial sum
$$ eqalign{S_m &= sum_{n=1}^{6m} frac{a_n}{n}cr
& = sum_{j=0}^m frac{1}{6j+1} +
10 sum_{j=0}^m frac{1}{6j+2} + 100 sum_{j=0}^m frac{1}{6j+3}
- 37 sum_{k=4}^6 sum_{j=0}^m frac{1}{6j+k}cr
&= frac{1}{6} left(Psi(m+1+1/6) - Psi(1/6) + 10 (Psi(m+1+2/6) - Psi(2/6)) + 100 (Psi(m+1+3/6) - Psi(3/6)) - 37 (Psi(m+1+4/6)+Psi(m+1+5/6)+Psi(m+1+6/6)-Psi(4/6)-Psi(5/6)-Psi(6/6))right)cr}$$
and since $Psi(x) = ln(x) + O(1/x)$ as $x to infty$, the sum converges.
In fact, the limit is
$$ frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}$$
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
add a comment |
up vote
3
down vote
Added for your curiosity but too long for a comment.
Starting from Robert Israel's elegant answer, it is possible to have quite accurate approximations of the partiel sums using the fact that, for large values of $p$ we have
$$Psi (p)=log left({p}right)-frac{1}{2 p}-frac{1}{12 p^2}+frac{1}{120
p^4}+Oleft(frac{1}{p^6}right)$$ making
$$S_m=left(frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}right)-frac{13}{2
m}+frac{23}{3 m^2}-frac{311}{36 m^3}+frac{499}{54 m^4}-frac{36377}{3888
m^5}+Oleft(frac{1}{m^6}right)$$ Below are listed some values
$$left(
begin{array}{ccc}
m & text{approximation} & text{exact} \
2 & 19.691108 & 19.787015 \
3 & 20.259944 & 20.269370 \
4 & 20.565282 & 20.567065 \
5 & 20.768485 & 20.768971 \
6 & 20.914700 & 20.914867 \
7 & 21.025135 & 21.025202 \
8 & 21.111527 & 21.111558 \
9 & 21.180965 & 21.180981
end{array}
right)$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037247%2fseries-convergence-without-sigma-notation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
13
down vote
accepted
First, notice that $$F_n=frac{1}{6n+1}+frac{10}{6n+2}+frac{100}{6n+3}-frac{37}{6n+4}-frac{37}{6n+5}-frac{37}{6n+6} geq frac{111}{6n+3}-frac{111}{6n+4} > 0.$$
Then, notice that $$F_n leq frac{111}{6n+1}-frac{111}{6n+6}=frac{555}{(6n+1)(6n+6)}.$$
Thus the sum of $F_n$ converges. How can you infer the final result from this?
New contributor
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
add a comment |
up vote
13
down vote
accepted
First, notice that $$F_n=frac{1}{6n+1}+frac{10}{6n+2}+frac{100}{6n+3}-frac{37}{6n+4}-frac{37}{6n+5}-frac{37}{6n+6} geq frac{111}{6n+3}-frac{111}{6n+4} > 0.$$
Then, notice that $$F_n leq frac{111}{6n+1}-frac{111}{6n+6}=frac{555}{(6n+1)(6n+6)}.$$
Thus the sum of $F_n$ converges. How can you infer the final result from this?
New contributor
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
add a comment |
up vote
13
down vote
accepted
up vote
13
down vote
accepted
First, notice that $$F_n=frac{1}{6n+1}+frac{10}{6n+2}+frac{100}{6n+3}-frac{37}{6n+4}-frac{37}{6n+5}-frac{37}{6n+6} geq frac{111}{6n+3}-frac{111}{6n+4} > 0.$$
Then, notice that $$F_n leq frac{111}{6n+1}-frac{111}{6n+6}=frac{555}{(6n+1)(6n+6)}.$$
Thus the sum of $F_n$ converges. How can you infer the final result from this?
New contributor
First, notice that $$F_n=frac{1}{6n+1}+frac{10}{6n+2}+frac{100}{6n+3}-frac{37}{6n+4}-frac{37}{6n+5}-frac{37}{6n+6} geq frac{111}{6n+3}-frac{111}{6n+4} > 0.$$
Then, notice that $$F_n leq frac{111}{6n+1}-frac{111}{6n+6}=frac{555}{(6n+1)(6n+6)}.$$
Thus the sum of $F_n$ converges. How can you infer the final result from this?
New contributor
New contributor
answered Dec 12 at 21:43
Mindlack
88716
88716
New contributor
New contributor
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
add a comment |
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
2
2
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
Alternatively, you can write $$F_n = {frac {303264,{n}^{4}+649296,{n}^{3}+471096,{n}^{2}+132516,n+ 11892}{ left( 6,n+1 right) left( 6,n+2 right) left( 6,n+3 right) left( 6,n+4 right) left( 6,n+5 right) left( 6,n+6 right) }} $$ and note that the numerator has degree $4$ and denominator degree $6$, so $F_n = O(1/n^2)$.
– Robert Israel
Dec 12 at 22:09
add a comment |
up vote
8
down vote
I presume the pattern $(1, 10, 100, -37, -37, -37)$ continues forever, so this is
$$ sum_{n=1}^infty frac{a_n}{n}$$
where $$ a_n = cases{1 & if $n equiv 1 mod 6$cr
10 & if $n equiv 2 mod 6$cr
100 & if $n equiv 3 mod 6$cr
-37 & if $n equiv 4,5$ or $0 mod 6$cr}$$
Note that $1+10+100 - 3times 37 = 0$. Then the $6m$
-th partial sum
$$ eqalign{S_m &= sum_{n=1}^{6m} frac{a_n}{n}cr
& = sum_{j=0}^m frac{1}{6j+1} +
10 sum_{j=0}^m frac{1}{6j+2} + 100 sum_{j=0}^m frac{1}{6j+3}
- 37 sum_{k=4}^6 sum_{j=0}^m frac{1}{6j+k}cr
&= frac{1}{6} left(Psi(m+1+1/6) - Psi(1/6) + 10 (Psi(m+1+2/6) - Psi(2/6)) + 100 (Psi(m+1+3/6) - Psi(3/6)) - 37 (Psi(m+1+4/6)+Psi(m+1+5/6)+Psi(m+1+6/6)-Psi(4/6)-Psi(5/6)-Psi(6/6))right)cr}$$
and since $Psi(x) = ln(x) + O(1/x)$ as $x to infty$, the sum converges.
In fact, the limit is
$$ frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}$$
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
add a comment |
up vote
8
down vote
I presume the pattern $(1, 10, 100, -37, -37, -37)$ continues forever, so this is
$$ sum_{n=1}^infty frac{a_n}{n}$$
where $$ a_n = cases{1 & if $n equiv 1 mod 6$cr
10 & if $n equiv 2 mod 6$cr
100 & if $n equiv 3 mod 6$cr
-37 & if $n equiv 4,5$ or $0 mod 6$cr}$$
Note that $1+10+100 - 3times 37 = 0$. Then the $6m$
-th partial sum
$$ eqalign{S_m &= sum_{n=1}^{6m} frac{a_n}{n}cr
& = sum_{j=0}^m frac{1}{6j+1} +
10 sum_{j=0}^m frac{1}{6j+2} + 100 sum_{j=0}^m frac{1}{6j+3}
- 37 sum_{k=4}^6 sum_{j=0}^m frac{1}{6j+k}cr
&= frac{1}{6} left(Psi(m+1+1/6) - Psi(1/6) + 10 (Psi(m+1+2/6) - Psi(2/6)) + 100 (Psi(m+1+3/6) - Psi(3/6)) - 37 (Psi(m+1+4/6)+Psi(m+1+5/6)+Psi(m+1+6/6)-Psi(4/6)-Psi(5/6)-Psi(6/6))right)cr}$$
and since $Psi(x) = ln(x) + O(1/x)$ as $x to infty$, the sum converges.
In fact, the limit is
$$ frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}$$
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
add a comment |
up vote
8
down vote
up vote
8
down vote
I presume the pattern $(1, 10, 100, -37, -37, -37)$ continues forever, so this is
$$ sum_{n=1}^infty frac{a_n}{n}$$
where $$ a_n = cases{1 & if $n equiv 1 mod 6$cr
10 & if $n equiv 2 mod 6$cr
100 & if $n equiv 3 mod 6$cr
-37 & if $n equiv 4,5$ or $0 mod 6$cr}$$
Note that $1+10+100 - 3times 37 = 0$. Then the $6m$
-th partial sum
$$ eqalign{S_m &= sum_{n=1}^{6m} frac{a_n}{n}cr
& = sum_{j=0}^m frac{1}{6j+1} +
10 sum_{j=0}^m frac{1}{6j+2} + 100 sum_{j=0}^m frac{1}{6j+3}
- 37 sum_{k=4}^6 sum_{j=0}^m frac{1}{6j+k}cr
&= frac{1}{6} left(Psi(m+1+1/6) - Psi(1/6) + 10 (Psi(m+1+2/6) - Psi(2/6)) + 100 (Psi(m+1+3/6) - Psi(3/6)) - 37 (Psi(m+1+4/6)+Psi(m+1+5/6)+Psi(m+1+6/6)-Psi(4/6)-Psi(5/6)-Psi(6/6))right)cr}$$
and since $Psi(x) = ln(x) + O(1/x)$ as $x to infty$, the sum converges.
In fact, the limit is
$$ frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}$$
I presume the pattern $(1, 10, 100, -37, -37, -37)$ continues forever, so this is
$$ sum_{n=1}^infty frac{a_n}{n}$$
where $$ a_n = cases{1 & if $n equiv 1 mod 6$cr
10 & if $n equiv 2 mod 6$cr
100 & if $n equiv 3 mod 6$cr
-37 & if $n equiv 4,5$ or $0 mod 6$cr}$$
Note that $1+10+100 - 3times 37 = 0$. Then the $6m$
-th partial sum
$$ eqalign{S_m &= sum_{n=1}^{6m} frac{a_n}{n}cr
& = sum_{j=0}^m frac{1}{6j+1} +
10 sum_{j=0}^m frac{1}{6j+2} + 100 sum_{j=0}^m frac{1}{6j+3}
- 37 sum_{k=4}^6 sum_{j=0}^m frac{1}{6j+k}cr
&= frac{1}{6} left(Psi(m+1+1/6) - Psi(1/6) + 10 (Psi(m+1+2/6) - Psi(2/6)) + 100 (Psi(m+1+3/6) - Psi(3/6)) - 37 (Psi(m+1+4/6)+Psi(m+1+5/6)+Psi(m+1+6/6)-Psi(4/6)-Psi(5/6)-Psi(6/6))right)cr}$$
and since $Psi(x) = ln(x) + O(1/x)$ as $x to infty$, the sum converges.
In fact, the limit is
$$ frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}$$
answered Dec 12 at 21:55
Robert Israel
317k23206457
317k23206457
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
add a comment |
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
How is $Psi$ defined exactly?
– Karlo
Dec 13 at 10:13
1
1
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
Also known as the Digamma function. $Psi(x) = dfrac{d}{dx} ln(Gamma(x))$.
– Robert Israel
Dec 13 at 13:28
add a comment |
up vote
3
down vote
Added for your curiosity but too long for a comment.
Starting from Robert Israel's elegant answer, it is possible to have quite accurate approximations of the partiel sums using the fact that, for large values of $p$ we have
$$Psi (p)=log left({p}right)-frac{1}{2 p}-frac{1}{12 p^2}+frac{1}{120
p^4}+Oleft(frac{1}{p^6}right)$$ making
$$S_m=left(frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}right)-frac{13}{2
m}+frac{23}{3 m^2}-frac{311}{36 m^3}+frac{499}{54 m^4}-frac{36377}{3888
m^5}+Oleft(frac{1}{m^6}right)$$ Below are listed some values
$$left(
begin{array}{ccc}
m & text{approximation} & text{exact} \
2 & 19.691108 & 19.787015 \
3 & 20.259944 & 20.269370 \
4 & 20.565282 & 20.567065 \
5 & 20.768485 & 20.768971 \
6 & 20.914700 & 20.914867 \
7 & 21.025135 & 21.025202 \
8 & 21.111527 & 21.111558 \
9 & 21.180965 & 21.180981
end{array}
right)$$
add a comment |
up vote
3
down vote
Added for your curiosity but too long for a comment.
Starting from Robert Israel's elegant answer, it is possible to have quite accurate approximations of the partiel sums using the fact that, for large values of $p$ we have
$$Psi (p)=log left({p}right)-frac{1}{2 p}-frac{1}{12 p^2}+frac{1}{120
p^4}+Oleft(frac{1}{p^6}right)$$ making
$$S_m=left(frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}right)-frac{13}{2
m}+frac{23}{3 m^2}-frac{311}{36 m^3}+frac{499}{54 m^4}-frac{36377}{3888
m^5}+Oleft(frac{1}{m^6}right)$$ Below are listed some values
$$left(
begin{array}{ccc}
m & text{approximation} & text{exact} \
2 & 19.691108 & 19.787015 \
3 & 20.259944 & 20.269370 \
4 & 20.565282 & 20.567065 \
5 & 20.768485 & 20.768971 \
6 & 20.914700 & 20.914867 \
7 & 21.025135 & 21.025202 \
8 & 21.111527 & 21.111558 \
9 & 21.180965 & 21.180981
end{array}
right)$$
add a comment |
up vote
3
down vote
up vote
3
down vote
Added for your curiosity but too long for a comment.
Starting from Robert Israel's elegant answer, it is possible to have quite accurate approximations of the partiel sums using the fact that, for large values of $p$ we have
$$Psi (p)=log left({p}right)-frac{1}{2 p}-frac{1}{12 p^2}+frac{1}{120
p^4}+Oleft(frac{1}{p^6}right)$$ making
$$S_m=left(frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}right)-frac{13}{2
m}+frac{23}{3 m^2}-frac{311}{36 m^3}+frac{499}{54 m^4}-frac{36377}{3888
m^5}+Oleft(frac{1}{m^6}right)$$ Below are listed some values
$$left(
begin{array}{ccc}
m & text{approximation} & text{exact} \
2 & 19.691108 & 19.787015 \
3 & 20.259944 & 20.269370 \
4 & 20.565282 & 20.567065 \
5 & 20.768485 & 20.768971 \
6 & 20.914700 & 20.914867 \
7 & 21.025135 & 21.025202 \
8 & 21.111527 & 21.111558 \
9 & 21.180965 & 21.180981
end{array}
right)$$
Added for your curiosity but too long for a comment.
Starting from Robert Israel's elegant answer, it is possible to have quite accurate approximations of the partiel sums using the fact that, for large values of $p$ we have
$$Psi (p)=log left({p}right)-frac{1}{2 p}-frac{1}{12 p^2}+frac{1}{120
p^4}+Oleft(frac{1}{p^6}right)$$ making
$$S_m=left(frac{64}{3} ln(2) - frac{63}{4} ln(3) +frac{161}{36} pi sqrt{3}right)-frac{13}{2
m}+frac{23}{3 m^2}-frac{311}{36 m^3}+frac{499}{54 m^4}-frac{36377}{3888
m^5}+Oleft(frac{1}{m^6}right)$$ Below are listed some values
$$left(
begin{array}{ccc}
m & text{approximation} & text{exact} \
2 & 19.691108 & 19.787015 \
3 & 20.259944 & 20.269370 \
4 & 20.565282 & 20.567065 \
5 & 20.768485 & 20.768971 \
6 & 20.914700 & 20.914867 \
7 & 21.025135 & 21.025202 \
8 & 21.111527 & 21.111558 \
9 & 21.180965 & 21.180981
end{array}
right)$$
answered Dec 13 at 4:30
Claude Leibovici
118k1156131
118k1156131
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037247%2fseries-convergence-without-sigma-notation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Related: 1 and 2
– Mason
Dec 13 at 2:02