Truncating before/after a specific date and time Error











up vote
0
down vote

favorite












I have a function written that is intended to truncate my data before or after a given range. I pass in a tuple of dates, position 1 being the start date and position 2 being the end date.



How could I also optionally specify a time as well date to truncate b4 and after - how would i ammend my code to do that?*)



Also - I keep getting an error on my data that says:



    raise InvalidIndexError('Reindexing only valid with uniquely'
pandas.core.indexes.base.InvalidIndexError: Reindexing only valid with uniquely valued Index
objects


I use:



date_range = self.data.copy()
nearest_start = date_range.iloc[
date_range.index.get_loc(datetime.datetime.strptime(split[0], '%m-%d-%Y'),
method='nearest')].name
...
date_range = date_range.truncate(before=nearest_start, after=nearest_end)


My date tuple:



('12-29-2011','12-23-2017')


This is my df.head() for the dataset:



                               Open       H   ...                RBE1min        O
DateTime ...
2007-11-06 12:45:00 -0.6437 -0.6423 ... 11/6/2007 12:45.00 21198.0
2007-11-06 14:30:00 -0.6430 -0.6425 ... 11/6/2007 14:30.00 21355.0
2007-11-06 19:33:00 -0.6423 -0.6400 ... 11/6/2007 19:33.00 21430.0
2007-11-07 09:00:00 -0.6434 -0.6421 ... 11/7/2007 09:00.00 21440.0
2007-11-07 12:26:00 -0.6433 -0.6396 ... 11/7/2007 12:26.00 21392.0


I've run the following to check for dupilcates in my index and and it returns NAT so i'm not sure why I'm still gettting this error



Any help would be greatly appreciated



dup = rbs4181.index.get_duplicates()









share|improve this question
























  • stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
    – IMCoins
    Nov 19 at 18:46












  • @IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
    – novawaly
    Nov 19 at 19:04










  • I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
    – IMCoins
    Nov 19 at 19:25















up vote
0
down vote

favorite












I have a function written that is intended to truncate my data before or after a given range. I pass in a tuple of dates, position 1 being the start date and position 2 being the end date.



How could I also optionally specify a time as well date to truncate b4 and after - how would i ammend my code to do that?*)



Also - I keep getting an error on my data that says:



    raise InvalidIndexError('Reindexing only valid with uniquely'
pandas.core.indexes.base.InvalidIndexError: Reindexing only valid with uniquely valued Index
objects


I use:



date_range = self.data.copy()
nearest_start = date_range.iloc[
date_range.index.get_loc(datetime.datetime.strptime(split[0], '%m-%d-%Y'),
method='nearest')].name
...
date_range = date_range.truncate(before=nearest_start, after=nearest_end)


My date tuple:



('12-29-2011','12-23-2017')


This is my df.head() for the dataset:



                               Open       H   ...                RBE1min        O
DateTime ...
2007-11-06 12:45:00 -0.6437 -0.6423 ... 11/6/2007 12:45.00 21198.0
2007-11-06 14:30:00 -0.6430 -0.6425 ... 11/6/2007 14:30.00 21355.0
2007-11-06 19:33:00 -0.6423 -0.6400 ... 11/6/2007 19:33.00 21430.0
2007-11-07 09:00:00 -0.6434 -0.6421 ... 11/7/2007 09:00.00 21440.0
2007-11-07 12:26:00 -0.6433 -0.6396 ... 11/7/2007 12:26.00 21392.0


I've run the following to check for dupilcates in my index and and it returns NAT so i'm not sure why I'm still gettting this error



Any help would be greatly appreciated



dup = rbs4181.index.get_duplicates()









share|improve this question
























  • stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
    – IMCoins
    Nov 19 at 18:46












  • @IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
    – novawaly
    Nov 19 at 19:04










  • I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
    – IMCoins
    Nov 19 at 19:25













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have a function written that is intended to truncate my data before or after a given range. I pass in a tuple of dates, position 1 being the start date and position 2 being the end date.



How could I also optionally specify a time as well date to truncate b4 and after - how would i ammend my code to do that?*)



Also - I keep getting an error on my data that says:



    raise InvalidIndexError('Reindexing only valid with uniquely'
pandas.core.indexes.base.InvalidIndexError: Reindexing only valid with uniquely valued Index
objects


I use:



date_range = self.data.copy()
nearest_start = date_range.iloc[
date_range.index.get_loc(datetime.datetime.strptime(split[0], '%m-%d-%Y'),
method='nearest')].name
...
date_range = date_range.truncate(before=nearest_start, after=nearest_end)


My date tuple:



('12-29-2011','12-23-2017')


This is my df.head() for the dataset:



                               Open       H   ...                RBE1min        O
DateTime ...
2007-11-06 12:45:00 -0.6437 -0.6423 ... 11/6/2007 12:45.00 21198.0
2007-11-06 14:30:00 -0.6430 -0.6425 ... 11/6/2007 14:30.00 21355.0
2007-11-06 19:33:00 -0.6423 -0.6400 ... 11/6/2007 19:33.00 21430.0
2007-11-07 09:00:00 -0.6434 -0.6421 ... 11/7/2007 09:00.00 21440.0
2007-11-07 12:26:00 -0.6433 -0.6396 ... 11/7/2007 12:26.00 21392.0


I've run the following to check for dupilcates in my index and and it returns NAT so i'm not sure why I'm still gettting this error



Any help would be greatly appreciated



dup = rbs4181.index.get_duplicates()









share|improve this question















I have a function written that is intended to truncate my data before or after a given range. I pass in a tuple of dates, position 1 being the start date and position 2 being the end date.



How could I also optionally specify a time as well date to truncate b4 and after - how would i ammend my code to do that?*)



Also - I keep getting an error on my data that says:



    raise InvalidIndexError('Reindexing only valid with uniquely'
pandas.core.indexes.base.InvalidIndexError: Reindexing only valid with uniquely valued Index
objects


I use:



date_range = self.data.copy()
nearest_start = date_range.iloc[
date_range.index.get_loc(datetime.datetime.strptime(split[0], '%m-%d-%Y'),
method='nearest')].name
...
date_range = date_range.truncate(before=nearest_start, after=nearest_end)


My date tuple:



('12-29-2011','12-23-2017')


This is my df.head() for the dataset:



                               Open       H   ...                RBE1min        O
DateTime ...
2007-11-06 12:45:00 -0.6437 -0.6423 ... 11/6/2007 12:45.00 21198.0
2007-11-06 14:30:00 -0.6430 -0.6425 ... 11/6/2007 14:30.00 21355.0
2007-11-06 19:33:00 -0.6423 -0.6400 ... 11/6/2007 19:33.00 21430.0
2007-11-07 09:00:00 -0.6434 -0.6421 ... 11/7/2007 09:00.00 21440.0
2007-11-07 12:26:00 -0.6433 -0.6396 ... 11/7/2007 12:26.00 21392.0


I've run the following to check for dupilcates in my index and and it returns NAT so i'm not sure why I'm still gettting this error



Any help would be greatly appreciated



dup = rbs4181.index.get_duplicates()






python python-3.x pandas numpy dataframe






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 19 at 19:04

























asked Nov 19 at 18:35









novawaly

1767




1767












  • stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
    – IMCoins
    Nov 19 at 18:46












  • @IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
    – novawaly
    Nov 19 at 19:04










  • I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
    – IMCoins
    Nov 19 at 19:25


















  • stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
    – IMCoins
    Nov 19 at 18:46












  • @IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
    – novawaly
    Nov 19 at 19:04










  • I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
    – IMCoins
    Nov 19 at 19:25
















stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
– IMCoins
Nov 19 at 18:46






stackoverflow.com/questions/50250022/… (I know the error is different, hence why I'm not flagging and answering but I think it'll help :)
– IMCoins
Nov 19 at 18:46














@IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
– novawaly
Nov 19 at 19:04




@IMCoins I've gone though that thread and checked my index for duplicates but i'm still getting that error. Any other advice?
– novawaly
Nov 19 at 19:04












I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
– IMCoins
Nov 19 at 19:25




I suggest you do that just to make sure you have no dupe ;) stackoverflow.com/q/35084071/8003790
– IMCoins
Nov 19 at 19:25












1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Not exactly what you want I fear. But it might help:



I used this dataset http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+# for testing.



For datetime indexes dates and strings that parse to timestamps can be passed as indexing parameters and as before and after parameters for truncate as well as pd.Timestamp.



In [1]: import pandas as pd

In [2]: df = pd.read_csv('datatest2.txt', parse_dates=[1], index_col=[1])

In [3]: df.index
Out[3]:
DatetimeIndex(['2015-02-11 14:48:00', '2015-02-11 14:49:00',
'2015-02-11 14:50:00', '2015-02-11 14:51:00',
'2015-02-11 14:51:59', '2015-02-11 14:53:00',
'2015-02-11 14:54:00', '2015-02-11 14:55:00',
'2015-02-11 14:55:59', '2015-02-11 14:57:00',
...
'2015-02-18 09:10:00', '2015-02-18 09:10:59',
'2015-02-18 09:11:59', '2015-02-18 09:13:00',
'2015-02-18 09:14:00', '2015-02-18 09:15:00',
'2015-02-18 09:16:00', '2015-02-18 09:16:59',
'2015-02-18 09:17:59', '2015-02-18 09:19:00'],
dtype='datetime64[ns]', name='date', length=9752, freq=None)

In [4]: df['2015-02-12':'2015-02-13'].index
Out[4]:
DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
'2015-02-12 00:02:00', '2015-02-12 00:03:00',
'2015-02-12 00:04:00', '2015-02-12 00:04:59',
'2015-02-12 00:06:00', '2015-02-12 00:07:00',
'2015-02-12 00:08:00', '2015-02-12 00:08:59',
...
'2015-02-13 23:50:00', '2015-02-13 23:51:00',
'2015-02-13 23:51:59', '2015-02-13 23:53:00',
'2015-02-13 23:54:00', '2015-02-13 23:55:00',
'2015-02-13 23:55:59', '2015-02-13 23:57:00',
'2015-02-13 23:57:59', '2015-02-13 23:58:59'],
dtype='datetime64[ns]', name='date', length=2880, freq=None)

In [5]: df.truncate(before=pd.Timestamp('2015-02-12'), after=pd.Timestamp('2015-02-14')).index
Out[5]:
DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
'2015-02-12 00:02:00', '2015-02-12 00:03:00',
'2015-02-12 00:04:00', '2015-02-12 00:04:59',
'2015-02-12 00:06:00', '2015-02-12 00:07:00',
'2015-02-12 00:08:00', '2015-02-12 00:08:59',
...
'2015-02-13 23:51:00', '2015-02-13 23:51:59',
'2015-02-13 23:53:00', '2015-02-13 23:54:00',
'2015-02-13 23:55:00', '2015-02-13 23:55:59',
'2015-02-13 23:57:00', '2015-02-13 23:57:59',
'2015-02-13 23:58:59', '2015-02-14 00:00:00'],
dtype='datetime64[ns]', name='date', length=2881, freq=None)

In [6]: df.truncate(before='2015-02-12', after='2015-02-14').index
Out[6]:
DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
'2015-02-12 00:02:00', '2015-02-12 00:03:00',
'2015-02-12 00:04:00', '2015-02-12 00:04:59',
'2015-02-12 00:06:00', '2015-02-12 00:07:00',
'2015-02-12 00:08:00', '2015-02-12 00:08:59',
...
'2015-02-13 23:51:00', '2015-02-13 23:51:59',
'2015-02-13 23:53:00', '2015-02-13 23:54:00',
'2015-02-13 23:55:00', '2015-02-13 23:55:59',
'2015-02-13 23:57:00', '2015-02-13 23:57:59',
'2015-02-13 23:58:59', '2015-02-14 00:00:00'],
dtype='datetime64[ns]', name='date', length=2881, freq=None)

In [7]: df.truncate(before='2015-02-12 01:00:00', after='2015-02-13 23:00:00').index
Out[7]:
DatetimeIndex(['2015-02-12 01:00:00', '2015-02-12 01:01:00',
'2015-02-12 01:01:59', '2015-02-12 01:02:59',
'2015-02-12 01:04:00', '2015-02-12 01:05:00',
'2015-02-12 01:06:00', '2015-02-12 01:07:00',
'2015-02-12 01:08:00', '2015-02-12 01:08:59',
...
'2015-02-13 22:51:00', '2015-02-13 22:52:00',
'2015-02-13 22:53:00', '2015-02-13 22:53:59',
'2015-02-13 22:54:59', '2015-02-13 22:56:00',
'2015-02-13 22:57:00', '2015-02-13 22:58:00',
'2015-02-13 22:59:00', '2015-02-13 22:59:59'],
dtype='datetime64[ns]', name='date', length=2761, freq=None)


Hence I think you need to only modify your function to validate whether valid dates (and times) were passed.






share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53380718%2ftruncating-before-after-a-specific-date-and-time-error%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    Not exactly what you want I fear. But it might help:



    I used this dataset http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+# for testing.



    For datetime indexes dates and strings that parse to timestamps can be passed as indexing parameters and as before and after parameters for truncate as well as pd.Timestamp.



    In [1]: import pandas as pd

    In [2]: df = pd.read_csv('datatest2.txt', parse_dates=[1], index_col=[1])

    In [3]: df.index
    Out[3]:
    DatetimeIndex(['2015-02-11 14:48:00', '2015-02-11 14:49:00',
    '2015-02-11 14:50:00', '2015-02-11 14:51:00',
    '2015-02-11 14:51:59', '2015-02-11 14:53:00',
    '2015-02-11 14:54:00', '2015-02-11 14:55:00',
    '2015-02-11 14:55:59', '2015-02-11 14:57:00',
    ...
    '2015-02-18 09:10:00', '2015-02-18 09:10:59',
    '2015-02-18 09:11:59', '2015-02-18 09:13:00',
    '2015-02-18 09:14:00', '2015-02-18 09:15:00',
    '2015-02-18 09:16:00', '2015-02-18 09:16:59',
    '2015-02-18 09:17:59', '2015-02-18 09:19:00'],
    dtype='datetime64[ns]', name='date', length=9752, freq=None)

    In [4]: df['2015-02-12':'2015-02-13'].index
    Out[4]:
    DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
    '2015-02-12 00:02:00', '2015-02-12 00:03:00',
    '2015-02-12 00:04:00', '2015-02-12 00:04:59',
    '2015-02-12 00:06:00', '2015-02-12 00:07:00',
    '2015-02-12 00:08:00', '2015-02-12 00:08:59',
    ...
    '2015-02-13 23:50:00', '2015-02-13 23:51:00',
    '2015-02-13 23:51:59', '2015-02-13 23:53:00',
    '2015-02-13 23:54:00', '2015-02-13 23:55:00',
    '2015-02-13 23:55:59', '2015-02-13 23:57:00',
    '2015-02-13 23:57:59', '2015-02-13 23:58:59'],
    dtype='datetime64[ns]', name='date', length=2880, freq=None)

    In [5]: df.truncate(before=pd.Timestamp('2015-02-12'), after=pd.Timestamp('2015-02-14')).index
    Out[5]:
    DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
    '2015-02-12 00:02:00', '2015-02-12 00:03:00',
    '2015-02-12 00:04:00', '2015-02-12 00:04:59',
    '2015-02-12 00:06:00', '2015-02-12 00:07:00',
    '2015-02-12 00:08:00', '2015-02-12 00:08:59',
    ...
    '2015-02-13 23:51:00', '2015-02-13 23:51:59',
    '2015-02-13 23:53:00', '2015-02-13 23:54:00',
    '2015-02-13 23:55:00', '2015-02-13 23:55:59',
    '2015-02-13 23:57:00', '2015-02-13 23:57:59',
    '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
    dtype='datetime64[ns]', name='date', length=2881, freq=None)

    In [6]: df.truncate(before='2015-02-12', after='2015-02-14').index
    Out[6]:
    DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
    '2015-02-12 00:02:00', '2015-02-12 00:03:00',
    '2015-02-12 00:04:00', '2015-02-12 00:04:59',
    '2015-02-12 00:06:00', '2015-02-12 00:07:00',
    '2015-02-12 00:08:00', '2015-02-12 00:08:59',
    ...
    '2015-02-13 23:51:00', '2015-02-13 23:51:59',
    '2015-02-13 23:53:00', '2015-02-13 23:54:00',
    '2015-02-13 23:55:00', '2015-02-13 23:55:59',
    '2015-02-13 23:57:00', '2015-02-13 23:57:59',
    '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
    dtype='datetime64[ns]', name='date', length=2881, freq=None)

    In [7]: df.truncate(before='2015-02-12 01:00:00', after='2015-02-13 23:00:00').index
    Out[7]:
    DatetimeIndex(['2015-02-12 01:00:00', '2015-02-12 01:01:00',
    '2015-02-12 01:01:59', '2015-02-12 01:02:59',
    '2015-02-12 01:04:00', '2015-02-12 01:05:00',
    '2015-02-12 01:06:00', '2015-02-12 01:07:00',
    '2015-02-12 01:08:00', '2015-02-12 01:08:59',
    ...
    '2015-02-13 22:51:00', '2015-02-13 22:52:00',
    '2015-02-13 22:53:00', '2015-02-13 22:53:59',
    '2015-02-13 22:54:59', '2015-02-13 22:56:00',
    '2015-02-13 22:57:00', '2015-02-13 22:58:00',
    '2015-02-13 22:59:00', '2015-02-13 22:59:59'],
    dtype='datetime64[ns]', name='date', length=2761, freq=None)


    Hence I think you need to only modify your function to validate whether valid dates (and times) were passed.






    share|improve this answer

























      up vote
      0
      down vote



      accepted










      Not exactly what you want I fear. But it might help:



      I used this dataset http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+# for testing.



      For datetime indexes dates and strings that parse to timestamps can be passed as indexing parameters and as before and after parameters for truncate as well as pd.Timestamp.



      In [1]: import pandas as pd

      In [2]: df = pd.read_csv('datatest2.txt', parse_dates=[1], index_col=[1])

      In [3]: df.index
      Out[3]:
      DatetimeIndex(['2015-02-11 14:48:00', '2015-02-11 14:49:00',
      '2015-02-11 14:50:00', '2015-02-11 14:51:00',
      '2015-02-11 14:51:59', '2015-02-11 14:53:00',
      '2015-02-11 14:54:00', '2015-02-11 14:55:00',
      '2015-02-11 14:55:59', '2015-02-11 14:57:00',
      ...
      '2015-02-18 09:10:00', '2015-02-18 09:10:59',
      '2015-02-18 09:11:59', '2015-02-18 09:13:00',
      '2015-02-18 09:14:00', '2015-02-18 09:15:00',
      '2015-02-18 09:16:00', '2015-02-18 09:16:59',
      '2015-02-18 09:17:59', '2015-02-18 09:19:00'],
      dtype='datetime64[ns]', name='date', length=9752, freq=None)

      In [4]: df['2015-02-12':'2015-02-13'].index
      Out[4]:
      DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
      '2015-02-12 00:02:00', '2015-02-12 00:03:00',
      '2015-02-12 00:04:00', '2015-02-12 00:04:59',
      '2015-02-12 00:06:00', '2015-02-12 00:07:00',
      '2015-02-12 00:08:00', '2015-02-12 00:08:59',
      ...
      '2015-02-13 23:50:00', '2015-02-13 23:51:00',
      '2015-02-13 23:51:59', '2015-02-13 23:53:00',
      '2015-02-13 23:54:00', '2015-02-13 23:55:00',
      '2015-02-13 23:55:59', '2015-02-13 23:57:00',
      '2015-02-13 23:57:59', '2015-02-13 23:58:59'],
      dtype='datetime64[ns]', name='date', length=2880, freq=None)

      In [5]: df.truncate(before=pd.Timestamp('2015-02-12'), after=pd.Timestamp('2015-02-14')).index
      Out[5]:
      DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
      '2015-02-12 00:02:00', '2015-02-12 00:03:00',
      '2015-02-12 00:04:00', '2015-02-12 00:04:59',
      '2015-02-12 00:06:00', '2015-02-12 00:07:00',
      '2015-02-12 00:08:00', '2015-02-12 00:08:59',
      ...
      '2015-02-13 23:51:00', '2015-02-13 23:51:59',
      '2015-02-13 23:53:00', '2015-02-13 23:54:00',
      '2015-02-13 23:55:00', '2015-02-13 23:55:59',
      '2015-02-13 23:57:00', '2015-02-13 23:57:59',
      '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
      dtype='datetime64[ns]', name='date', length=2881, freq=None)

      In [6]: df.truncate(before='2015-02-12', after='2015-02-14').index
      Out[6]:
      DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
      '2015-02-12 00:02:00', '2015-02-12 00:03:00',
      '2015-02-12 00:04:00', '2015-02-12 00:04:59',
      '2015-02-12 00:06:00', '2015-02-12 00:07:00',
      '2015-02-12 00:08:00', '2015-02-12 00:08:59',
      ...
      '2015-02-13 23:51:00', '2015-02-13 23:51:59',
      '2015-02-13 23:53:00', '2015-02-13 23:54:00',
      '2015-02-13 23:55:00', '2015-02-13 23:55:59',
      '2015-02-13 23:57:00', '2015-02-13 23:57:59',
      '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
      dtype='datetime64[ns]', name='date', length=2881, freq=None)

      In [7]: df.truncate(before='2015-02-12 01:00:00', after='2015-02-13 23:00:00').index
      Out[7]:
      DatetimeIndex(['2015-02-12 01:00:00', '2015-02-12 01:01:00',
      '2015-02-12 01:01:59', '2015-02-12 01:02:59',
      '2015-02-12 01:04:00', '2015-02-12 01:05:00',
      '2015-02-12 01:06:00', '2015-02-12 01:07:00',
      '2015-02-12 01:08:00', '2015-02-12 01:08:59',
      ...
      '2015-02-13 22:51:00', '2015-02-13 22:52:00',
      '2015-02-13 22:53:00', '2015-02-13 22:53:59',
      '2015-02-13 22:54:59', '2015-02-13 22:56:00',
      '2015-02-13 22:57:00', '2015-02-13 22:58:00',
      '2015-02-13 22:59:00', '2015-02-13 22:59:59'],
      dtype='datetime64[ns]', name='date', length=2761, freq=None)


      Hence I think you need to only modify your function to validate whether valid dates (and times) were passed.






      share|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        Not exactly what you want I fear. But it might help:



        I used this dataset http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+# for testing.



        For datetime indexes dates and strings that parse to timestamps can be passed as indexing parameters and as before and after parameters for truncate as well as pd.Timestamp.



        In [1]: import pandas as pd

        In [2]: df = pd.read_csv('datatest2.txt', parse_dates=[1], index_col=[1])

        In [3]: df.index
        Out[3]:
        DatetimeIndex(['2015-02-11 14:48:00', '2015-02-11 14:49:00',
        '2015-02-11 14:50:00', '2015-02-11 14:51:00',
        '2015-02-11 14:51:59', '2015-02-11 14:53:00',
        '2015-02-11 14:54:00', '2015-02-11 14:55:00',
        '2015-02-11 14:55:59', '2015-02-11 14:57:00',
        ...
        '2015-02-18 09:10:00', '2015-02-18 09:10:59',
        '2015-02-18 09:11:59', '2015-02-18 09:13:00',
        '2015-02-18 09:14:00', '2015-02-18 09:15:00',
        '2015-02-18 09:16:00', '2015-02-18 09:16:59',
        '2015-02-18 09:17:59', '2015-02-18 09:19:00'],
        dtype='datetime64[ns]', name='date', length=9752, freq=None)

        In [4]: df['2015-02-12':'2015-02-13'].index
        Out[4]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:50:00', '2015-02-13 23:51:00',
        '2015-02-13 23:51:59', '2015-02-13 23:53:00',
        '2015-02-13 23:54:00', '2015-02-13 23:55:00',
        '2015-02-13 23:55:59', '2015-02-13 23:57:00',
        '2015-02-13 23:57:59', '2015-02-13 23:58:59'],
        dtype='datetime64[ns]', name='date', length=2880, freq=None)

        In [5]: df.truncate(before=pd.Timestamp('2015-02-12'), after=pd.Timestamp('2015-02-14')).index
        Out[5]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:51:00', '2015-02-13 23:51:59',
        '2015-02-13 23:53:00', '2015-02-13 23:54:00',
        '2015-02-13 23:55:00', '2015-02-13 23:55:59',
        '2015-02-13 23:57:00', '2015-02-13 23:57:59',
        '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
        dtype='datetime64[ns]', name='date', length=2881, freq=None)

        In [6]: df.truncate(before='2015-02-12', after='2015-02-14').index
        Out[6]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:51:00', '2015-02-13 23:51:59',
        '2015-02-13 23:53:00', '2015-02-13 23:54:00',
        '2015-02-13 23:55:00', '2015-02-13 23:55:59',
        '2015-02-13 23:57:00', '2015-02-13 23:57:59',
        '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
        dtype='datetime64[ns]', name='date', length=2881, freq=None)

        In [7]: df.truncate(before='2015-02-12 01:00:00', after='2015-02-13 23:00:00').index
        Out[7]:
        DatetimeIndex(['2015-02-12 01:00:00', '2015-02-12 01:01:00',
        '2015-02-12 01:01:59', '2015-02-12 01:02:59',
        '2015-02-12 01:04:00', '2015-02-12 01:05:00',
        '2015-02-12 01:06:00', '2015-02-12 01:07:00',
        '2015-02-12 01:08:00', '2015-02-12 01:08:59',
        ...
        '2015-02-13 22:51:00', '2015-02-13 22:52:00',
        '2015-02-13 22:53:00', '2015-02-13 22:53:59',
        '2015-02-13 22:54:59', '2015-02-13 22:56:00',
        '2015-02-13 22:57:00', '2015-02-13 22:58:00',
        '2015-02-13 22:59:00', '2015-02-13 22:59:59'],
        dtype='datetime64[ns]', name='date', length=2761, freq=None)


        Hence I think you need to only modify your function to validate whether valid dates (and times) were passed.






        share|improve this answer












        Not exactly what you want I fear. But it might help:



        I used this dataset http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+# for testing.



        For datetime indexes dates and strings that parse to timestamps can be passed as indexing parameters and as before and after parameters for truncate as well as pd.Timestamp.



        In [1]: import pandas as pd

        In [2]: df = pd.read_csv('datatest2.txt', parse_dates=[1], index_col=[1])

        In [3]: df.index
        Out[3]:
        DatetimeIndex(['2015-02-11 14:48:00', '2015-02-11 14:49:00',
        '2015-02-11 14:50:00', '2015-02-11 14:51:00',
        '2015-02-11 14:51:59', '2015-02-11 14:53:00',
        '2015-02-11 14:54:00', '2015-02-11 14:55:00',
        '2015-02-11 14:55:59', '2015-02-11 14:57:00',
        ...
        '2015-02-18 09:10:00', '2015-02-18 09:10:59',
        '2015-02-18 09:11:59', '2015-02-18 09:13:00',
        '2015-02-18 09:14:00', '2015-02-18 09:15:00',
        '2015-02-18 09:16:00', '2015-02-18 09:16:59',
        '2015-02-18 09:17:59', '2015-02-18 09:19:00'],
        dtype='datetime64[ns]', name='date', length=9752, freq=None)

        In [4]: df['2015-02-12':'2015-02-13'].index
        Out[4]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:50:00', '2015-02-13 23:51:00',
        '2015-02-13 23:51:59', '2015-02-13 23:53:00',
        '2015-02-13 23:54:00', '2015-02-13 23:55:00',
        '2015-02-13 23:55:59', '2015-02-13 23:57:00',
        '2015-02-13 23:57:59', '2015-02-13 23:58:59'],
        dtype='datetime64[ns]', name='date', length=2880, freq=None)

        In [5]: df.truncate(before=pd.Timestamp('2015-02-12'), after=pd.Timestamp('2015-02-14')).index
        Out[5]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:51:00', '2015-02-13 23:51:59',
        '2015-02-13 23:53:00', '2015-02-13 23:54:00',
        '2015-02-13 23:55:00', '2015-02-13 23:55:59',
        '2015-02-13 23:57:00', '2015-02-13 23:57:59',
        '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
        dtype='datetime64[ns]', name='date', length=2881, freq=None)

        In [6]: df.truncate(before='2015-02-12', after='2015-02-14').index
        Out[6]:
        DatetimeIndex(['2015-02-12 00:00:00', '2015-02-12 00:01:00',
        '2015-02-12 00:02:00', '2015-02-12 00:03:00',
        '2015-02-12 00:04:00', '2015-02-12 00:04:59',
        '2015-02-12 00:06:00', '2015-02-12 00:07:00',
        '2015-02-12 00:08:00', '2015-02-12 00:08:59',
        ...
        '2015-02-13 23:51:00', '2015-02-13 23:51:59',
        '2015-02-13 23:53:00', '2015-02-13 23:54:00',
        '2015-02-13 23:55:00', '2015-02-13 23:55:59',
        '2015-02-13 23:57:00', '2015-02-13 23:57:59',
        '2015-02-13 23:58:59', '2015-02-14 00:00:00'],
        dtype='datetime64[ns]', name='date', length=2881, freq=None)

        In [7]: df.truncate(before='2015-02-12 01:00:00', after='2015-02-13 23:00:00').index
        Out[7]:
        DatetimeIndex(['2015-02-12 01:00:00', '2015-02-12 01:01:00',
        '2015-02-12 01:01:59', '2015-02-12 01:02:59',
        '2015-02-12 01:04:00', '2015-02-12 01:05:00',
        '2015-02-12 01:06:00', '2015-02-12 01:07:00',
        '2015-02-12 01:08:00', '2015-02-12 01:08:59',
        ...
        '2015-02-13 22:51:00', '2015-02-13 22:52:00',
        '2015-02-13 22:53:00', '2015-02-13 22:53:59',
        '2015-02-13 22:54:59', '2015-02-13 22:56:00',
        '2015-02-13 22:57:00', '2015-02-13 22:58:00',
        '2015-02-13 22:59:00', '2015-02-13 22:59:59'],
        dtype='datetime64[ns]', name='date', length=2761, freq=None)


        Hence I think you need to only modify your function to validate whether valid dates (and times) were passed.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 19 at 19:46









        Joerg

        386




        386






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53380718%2ftruncating-before-after-a-specific-date-and-time-error%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

            Alcedinidae

            RAC Tourist Trophy