Keras TensorBoard visulize Conv Kernels











up vote
1
down vote

favorite












I am using Keras with TensorFlow as backend.
Now i want to use the TensorBoard callback to visualize my conv layer kernels.
But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
For the other conv layers i can just the the bias values and not the kernels.



Here is my sample code for the Keras model.



tb = TensorBoard(
log_dir=log_dir,
histogram_freq=epochs,
write_images=True)

# Define the DNN
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
model.add(Activation("relu"))
model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
model.add(Activation("relu"))
model.add(MaxPool2D())

model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
model.add(Activation("relu"))
model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
model.add(Activation("relu"))
model.add(MaxPool2D())

model.add(Flatten())
model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dense(num_classes, name="features"))
model.add(Activation("softmax"))

# Print the DNN layers
model.summary()

# Train the DNN
lr = 1e-3
optimizer = Adam(lr=lr)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(x_train, y_train, verbose=1,
batch_size=batch_size, epochs=epochs,
validation_data=(x_test, y_test),
callbacks=[tb])


And this is what i see in TensorBoard.
(I minimized the Kernels of my first conv layer)
TB Screenshot



What am i missing to visulize all my kernels?










share|improve this question




























    up vote
    1
    down vote

    favorite












    I am using Keras with TensorFlow as backend.
    Now i want to use the TensorBoard callback to visualize my conv layer kernels.
    But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
    For the other conv layers i can just the the bias values and not the kernels.



    Here is my sample code for the Keras model.



    tb = TensorBoard(
    log_dir=log_dir,
    histogram_freq=epochs,
    write_images=True)

    # Define the DNN
    model = Sequential()
    model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
    model.add(Activation("relu"))
    model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
    model.add(Activation("relu"))
    model.add(MaxPool2D())

    model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
    model.add(Activation("relu"))
    model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
    model.add(Activation("relu"))
    model.add(MaxPool2D())

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation("relu"))
    model.add(Dense(num_classes, name="features"))
    model.add(Activation("softmax"))

    # Print the DNN layers
    model.summary()

    # Train the DNN
    lr = 1e-3
    optimizer = Adam(lr=lr)
    model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
    model.fit(x_train, y_train, verbose=1,
    batch_size=batch_size, epochs=epochs,
    validation_data=(x_test, y_test),
    callbacks=[tb])


    And this is what i see in TensorBoard.
    (I minimized the Kernels of my first conv layer)
    TB Screenshot



    What am i missing to visulize all my kernels?










    share|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I am using Keras with TensorFlow as backend.
      Now i want to use the TensorBoard callback to visualize my conv layer kernels.
      But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
      For the other conv layers i can just the the bias values and not the kernels.



      Here is my sample code for the Keras model.



      tb = TensorBoard(
      log_dir=log_dir,
      histogram_freq=epochs,
      write_images=True)

      # Define the DNN
      model = Sequential()
      model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Flatten())
      model.add(Dense(128))
      model.add(Activation("relu"))
      model.add(Dense(num_classes, name="features"))
      model.add(Activation("softmax"))

      # Print the DNN layers
      model.summary()

      # Train the DNN
      lr = 1e-3
      optimizer = Adam(lr=lr)
      model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
      model.fit(x_train, y_train, verbose=1,
      batch_size=batch_size, epochs=epochs,
      validation_data=(x_test, y_test),
      callbacks=[tb])


      And this is what i see in TensorBoard.
      (I minimized the Kernels of my first conv layer)
      TB Screenshot



      What am i missing to visulize all my kernels?










      share|improve this question















      I am using Keras with TensorFlow as backend.
      Now i want to use the TensorBoard callback to visualize my conv layer kernels.
      But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
      For the other conv layers i can just the the bias values and not the kernels.



      Here is my sample code for the Keras model.



      tb = TensorBoard(
      log_dir=log_dir,
      histogram_freq=epochs,
      write_images=True)

      # Define the DNN
      model = Sequential()
      model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Flatten())
      model.add(Dense(128))
      model.add(Activation("relu"))
      model.add(Dense(num_classes, name="features"))
      model.add(Activation("softmax"))

      # Print the DNN layers
      model.summary()

      # Train the DNN
      lr = 1e-3
      optimizer = Adam(lr=lr)
      model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
      model.fit(x_train, y_train, verbose=1,
      batch_size=batch_size, epochs=epochs,
      validation_data=(x_test, y_test),
      callbacks=[tb])


      And this is what i see in TensorBoard.
      (I minimized the Kernels of my first conv layer)
      TB Screenshot



      What am i missing to visulize all my kernels?







      python keras tensorboard






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 17 at 17:06

























      asked Nov 17 at 14:36









      Franneck

      64




      64





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53352215%2fkeras-tensorboard-visulize-conv-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53352215%2fkeras-tensorboard-visulize-conv-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          Origin of the phrase “under your belt”?