Complicated square root problem.












3












$begingroup$


I was wondering the general method to solve




What is the value of $sqrt{a-bsqrt{c}}?$




The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$, but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$ which equals $sqrt{3}+sqrt{2}$. What is the general method to simplify these problems?(i.e. $sqrt{a-bsqrt{c}}=?$)










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    "The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
    $endgroup$
    – fleablood
    4 hours ago












  • $begingroup$
    By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
    $endgroup$
    – fleablood
    4 hours ago






  • 1




    $begingroup$
    Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
    $endgroup$
    – JMoravitz
    4 hours ago










  • $begingroup$
    @fleablood I know, complex numbers. How should I write it then?
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    As @JMoravitz said, rewrite is as "complicated"
    $endgroup$
    – MilkyWay90
    1 hour ago
















3












$begingroup$


I was wondering the general method to solve




What is the value of $sqrt{a-bsqrt{c}}?$




The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$, but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$ which equals $sqrt{3}+sqrt{2}$. What is the general method to simplify these problems?(i.e. $sqrt{a-bsqrt{c}}=?$)










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    "The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
    $endgroup$
    – fleablood
    4 hours ago












  • $begingroup$
    By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
    $endgroup$
    – fleablood
    4 hours ago






  • 1




    $begingroup$
    Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
    $endgroup$
    – JMoravitz
    4 hours ago










  • $begingroup$
    @fleablood I know, complex numbers. How should I write it then?
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    As @JMoravitz said, rewrite is as "complicated"
    $endgroup$
    – MilkyWay90
    1 hour ago














3












3








3


2



$begingroup$


I was wondering the general method to solve




What is the value of $sqrt{a-bsqrt{c}}?$




The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$, but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$ which equals $sqrt{3}+sqrt{2}$. What is the general method to simplify these problems?(i.e. $sqrt{a-bsqrt{c}}=?$)










share|cite|improve this question











$endgroup$




I was wondering the general method to solve




What is the value of $sqrt{a-bsqrt{c}}?$




The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$, but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$ which equals $sqrt{3}+sqrt{2}$. What is the general method to simplify these problems?(i.e. $sqrt{a-bsqrt{c}}=?$)







number-theory radicals nested-radicals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Michael Rozenberg

104k1891196




104k1891196










asked 4 hours ago









Max0815Max0815

67118




67118








  • 1




    $begingroup$
    "The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
    $endgroup$
    – fleablood
    4 hours ago












  • $begingroup$
    By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
    $endgroup$
    – fleablood
    4 hours ago






  • 1




    $begingroup$
    Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
    $endgroup$
    – JMoravitz
    4 hours ago










  • $begingroup$
    @fleablood I know, complex numbers. How should I write it then?
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    As @JMoravitz said, rewrite is as "complicated"
    $endgroup$
    – MilkyWay90
    1 hour ago














  • 1




    $begingroup$
    "The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
    $endgroup$
    – fleablood
    4 hours ago












  • $begingroup$
    By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
    $endgroup$
    – fleablood
    4 hours ago






  • 1




    $begingroup$
    Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
    $endgroup$
    – JMoravitz
    4 hours ago










  • $begingroup$
    @fleablood I know, complex numbers. How should I write it then?
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    As @JMoravitz said, rewrite is as "complicated"
    $endgroup$
    – MilkyWay90
    1 hour ago








1




1




$begingroup$
"The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
$endgroup$
– fleablood
4 hours ago






$begingroup$
"The basic method I learned is to set this equal to $sqrt{x-ysqrt{c}}$" and do what with it? "but I found out that this doesn't work with $sqrt{5+2sqrt{6}}$" why not? What was supposed to happen?
$endgroup$
– fleablood
4 hours ago














$begingroup$
By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
$endgroup$
– fleablood
4 hours ago




$begingroup$
By the way, don't say "complex square root". "complex" has a specific mathematical meaning you didn't mean.
$endgroup$
– fleablood
4 hours ago




1




1




$begingroup$
Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
$endgroup$
– JMoravitz
4 hours ago




$begingroup$
Quite. The word "complicated" would be better to use here since "complicated" doesn't really have much mathematical use, just linguistic use.
$endgroup$
– JMoravitz
4 hours ago












$begingroup$
@fleablood I know, complex numbers. How should I write it then?
$endgroup$
– Max0815
3 hours ago




$begingroup$
@fleablood I know, complex numbers. How should I write it then?
$endgroup$
– Max0815
3 hours ago












$begingroup$
As @JMoravitz said, rewrite is as "complicated"
$endgroup$
– MilkyWay90
1 hour ago




$begingroup$
As @JMoravitz said, rewrite is as "complicated"
$endgroup$
– MilkyWay90
1 hour ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

One way of approaching this problem is by viewing it as a zero of an equation. Let me explain. Let's say you want to compute $sqrt{x_0}$ where $x_0$ is a zero of some quadratic polynomial of the form $x^2-bx+1$. Now, one way to go is to note that if you have a zero of $x^2+ax+1$, then it will still be a zero if you multiply it with $x^2-ax+1$ which equals
$$x^4 + (2-a^2) x^2 + 1$$
Now the idea is to work backwards. So, in particular, if you can find you can find an $a$ such that $b=a^2-2$, then you can conclude that the square root of you polynomial is equal to one of the zeros of the polynomials $x^2-ax+1$ or $x^2+ax+1$. It is usually not too hard to find out which. If you found out which, you can rewrite your square root accordingly to the desired form :)



To conclude, one of the tricks is to find the right form of your polynomials such that you end up with something useful. This method will however require some puzzling.



Edit applying this method to your example, you will find that the polynomial you need (thus the one for which you want to calculate the square root of a zero) is $x^2-10x+1$. Then according to the above method (which you derive on the go), your $a=sqrt{12}$ and then you just need to solve $x^2-ax+1=0$ which is the only possibility since for the other one, filling in a positive number will yield a positive number. Solving this equation by completing the square is not too difficult. It turns out that the zeros lie at around 0.5 and 3. Hence, it is not difficult to note you need the larger zero which turns out to be exactly gicen by $sqrt{2}+sqrt{3}$. Does that make sense?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes. thanx!!!!!
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
    $endgroup$
    – Stan Tendijck
    3 hours ago












  • $begingroup$
    yes I believe so too.
    $endgroup$
    – Max0815
    3 hours ago



















6












$begingroup$

There are the following identities.
$$sqrt{a+sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}$$ and
$$sqrt{a-sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}-sqrt{frac{a-sqrt{a^2-b}}{2}},$$
where all numbers under radicals they are non-negatives.



For example:
$$sqrt{5+2sqrt6}=sqrt{5+sqrt{24}}=sqrt{frac{5+sqrt{5^2-24}}{2}}+sqrt{frac{5-sqrt{5^2-24}}{2}}=sqrt3+sqrt2.$$
This is interesting, when $a$ and $b$ are rationals and $a^2-b$ is a square of a rational number.



The first identity is true because
$$left(sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}right)^2=$$
$$=frac{a+sqrt{a^2-b}}{2}+frac{a-sqrt{a^2-b}}{2}+2sqrt{frac{a+sqrt{a^2-b}}{2}}cdotsqrt{frac{a-sqrt{a^2-b}}{2}}=a+sqrt{b}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is interesting. I had never seen the identities you begin with.
    $endgroup$
    – Lubin
    3 hours ago












  • $begingroup$
    @Lubin same with me too.
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    We can prove it. It's not hard.
    $endgroup$
    – Michael Rozenberg
    2 hours ago










  • $begingroup$
    How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
    $endgroup$
    – Max0815
    2 hours ago










  • $begingroup$
    @Max0815 I added something. See now.
    $endgroup$
    – Michael Rozenberg
    2 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119568%2fcomplicated-square-root-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

One way of approaching this problem is by viewing it as a zero of an equation. Let me explain. Let's say you want to compute $sqrt{x_0}$ where $x_0$ is a zero of some quadratic polynomial of the form $x^2-bx+1$. Now, one way to go is to note that if you have a zero of $x^2+ax+1$, then it will still be a zero if you multiply it with $x^2-ax+1$ which equals
$$x^4 + (2-a^2) x^2 + 1$$
Now the idea is to work backwards. So, in particular, if you can find you can find an $a$ such that $b=a^2-2$, then you can conclude that the square root of you polynomial is equal to one of the zeros of the polynomials $x^2-ax+1$ or $x^2+ax+1$. It is usually not too hard to find out which. If you found out which, you can rewrite your square root accordingly to the desired form :)



To conclude, one of the tricks is to find the right form of your polynomials such that you end up with something useful. This method will however require some puzzling.



Edit applying this method to your example, you will find that the polynomial you need (thus the one for which you want to calculate the square root of a zero) is $x^2-10x+1$. Then according to the above method (which you derive on the go), your $a=sqrt{12}$ and then you just need to solve $x^2-ax+1=0$ which is the only possibility since for the other one, filling in a positive number will yield a positive number. Solving this equation by completing the square is not too difficult. It turns out that the zeros lie at around 0.5 and 3. Hence, it is not difficult to note you need the larger zero which turns out to be exactly gicen by $sqrt{2}+sqrt{3}$. Does that make sense?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes. thanx!!!!!
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
    $endgroup$
    – Stan Tendijck
    3 hours ago












  • $begingroup$
    yes I believe so too.
    $endgroup$
    – Max0815
    3 hours ago
















1












$begingroup$

One way of approaching this problem is by viewing it as a zero of an equation. Let me explain. Let's say you want to compute $sqrt{x_0}$ where $x_0$ is a zero of some quadratic polynomial of the form $x^2-bx+1$. Now, one way to go is to note that if you have a zero of $x^2+ax+1$, then it will still be a zero if you multiply it with $x^2-ax+1$ which equals
$$x^4 + (2-a^2) x^2 + 1$$
Now the idea is to work backwards. So, in particular, if you can find you can find an $a$ such that $b=a^2-2$, then you can conclude that the square root of you polynomial is equal to one of the zeros of the polynomials $x^2-ax+1$ or $x^2+ax+1$. It is usually not too hard to find out which. If you found out which, you can rewrite your square root accordingly to the desired form :)



To conclude, one of the tricks is to find the right form of your polynomials such that you end up with something useful. This method will however require some puzzling.



Edit applying this method to your example, you will find that the polynomial you need (thus the one for which you want to calculate the square root of a zero) is $x^2-10x+1$. Then according to the above method (which you derive on the go), your $a=sqrt{12}$ and then you just need to solve $x^2-ax+1=0$ which is the only possibility since for the other one, filling in a positive number will yield a positive number. Solving this equation by completing the square is not too difficult. It turns out that the zeros lie at around 0.5 and 3. Hence, it is not difficult to note you need the larger zero which turns out to be exactly gicen by $sqrt{2}+sqrt{3}$. Does that make sense?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Yes. thanx!!!!!
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
    $endgroup$
    – Stan Tendijck
    3 hours ago












  • $begingroup$
    yes I believe so too.
    $endgroup$
    – Max0815
    3 hours ago














1












1








1





$begingroup$

One way of approaching this problem is by viewing it as a zero of an equation. Let me explain. Let's say you want to compute $sqrt{x_0}$ where $x_0$ is a zero of some quadratic polynomial of the form $x^2-bx+1$. Now, one way to go is to note that if you have a zero of $x^2+ax+1$, then it will still be a zero if you multiply it with $x^2-ax+1$ which equals
$$x^4 + (2-a^2) x^2 + 1$$
Now the idea is to work backwards. So, in particular, if you can find you can find an $a$ such that $b=a^2-2$, then you can conclude that the square root of you polynomial is equal to one of the zeros of the polynomials $x^2-ax+1$ or $x^2+ax+1$. It is usually not too hard to find out which. If you found out which, you can rewrite your square root accordingly to the desired form :)



To conclude, one of the tricks is to find the right form of your polynomials such that you end up with something useful. This method will however require some puzzling.



Edit applying this method to your example, you will find that the polynomial you need (thus the one for which you want to calculate the square root of a zero) is $x^2-10x+1$. Then according to the above method (which you derive on the go), your $a=sqrt{12}$ and then you just need to solve $x^2-ax+1=0$ which is the only possibility since for the other one, filling in a positive number will yield a positive number. Solving this equation by completing the square is not too difficult. It turns out that the zeros lie at around 0.5 and 3. Hence, it is not difficult to note you need the larger zero which turns out to be exactly gicen by $sqrt{2}+sqrt{3}$. Does that make sense?






share|cite|improve this answer











$endgroup$



One way of approaching this problem is by viewing it as a zero of an equation. Let me explain. Let's say you want to compute $sqrt{x_0}$ where $x_0$ is a zero of some quadratic polynomial of the form $x^2-bx+1$. Now, one way to go is to note that if you have a zero of $x^2+ax+1$, then it will still be a zero if you multiply it with $x^2-ax+1$ which equals
$$x^4 + (2-a^2) x^2 + 1$$
Now the idea is to work backwards. So, in particular, if you can find you can find an $a$ such that $b=a^2-2$, then you can conclude that the square root of you polynomial is equal to one of the zeros of the polynomials $x^2-ax+1$ or $x^2+ax+1$. It is usually not too hard to find out which. If you found out which, you can rewrite your square root accordingly to the desired form :)



To conclude, one of the tricks is to find the right form of your polynomials such that you end up with something useful. This method will however require some puzzling.



Edit applying this method to your example, you will find that the polynomial you need (thus the one for which you want to calculate the square root of a zero) is $x^2-10x+1$. Then according to the above method (which you derive on the go), your $a=sqrt{12}$ and then you just need to solve $x^2-ax+1=0$ which is the only possibility since for the other one, filling in a positive number will yield a positive number. Solving this equation by completing the square is not too difficult. It turns out that the zeros lie at around 0.5 and 3. Hence, it is not difficult to note you need the larger zero which turns out to be exactly gicen by $sqrt{2}+sqrt{3}$. Does that make sense?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 3 hours ago

























answered 4 hours ago









Stan TendijckStan Tendijck

1,836311




1,836311












  • $begingroup$
    Yes. thanx!!!!!
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
    $endgroup$
    – Stan Tendijck
    3 hours ago












  • $begingroup$
    yes I believe so too.
    $endgroup$
    – Max0815
    3 hours ago


















  • $begingroup$
    Yes. thanx!!!!!
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
    $endgroup$
    – Stan Tendijck
    3 hours ago












  • $begingroup$
    yes I believe so too.
    $endgroup$
    – Max0815
    3 hours ago
















$begingroup$
Yes. thanx!!!!!
$endgroup$
– Max0815
3 hours ago




$begingroup$
Yes. thanx!!!!!
$endgroup$
– Max0815
3 hours ago












$begingroup$
If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
$endgroup$
– Stan Tendijck
3 hours ago






$begingroup$
If your polynomial ends with $+b$ instead of $1$, I think you need to work with $+sqrt{b}$ in the polynomials with the $a$s. (Did not check this but I am sure this will work).
$endgroup$
– Stan Tendijck
3 hours ago














$begingroup$
yes I believe so too.
$endgroup$
– Max0815
3 hours ago




$begingroup$
yes I believe so too.
$endgroup$
– Max0815
3 hours ago











6












$begingroup$

There are the following identities.
$$sqrt{a+sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}$$ and
$$sqrt{a-sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}-sqrt{frac{a-sqrt{a^2-b}}{2}},$$
where all numbers under radicals they are non-negatives.



For example:
$$sqrt{5+2sqrt6}=sqrt{5+sqrt{24}}=sqrt{frac{5+sqrt{5^2-24}}{2}}+sqrt{frac{5-sqrt{5^2-24}}{2}}=sqrt3+sqrt2.$$
This is interesting, when $a$ and $b$ are rationals and $a^2-b$ is a square of a rational number.



The first identity is true because
$$left(sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}right)^2=$$
$$=frac{a+sqrt{a^2-b}}{2}+frac{a-sqrt{a^2-b}}{2}+2sqrt{frac{a+sqrt{a^2-b}}{2}}cdotsqrt{frac{a-sqrt{a^2-b}}{2}}=a+sqrt{b}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is interesting. I had never seen the identities you begin with.
    $endgroup$
    – Lubin
    3 hours ago












  • $begingroup$
    @Lubin same with me too.
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    We can prove it. It's not hard.
    $endgroup$
    – Michael Rozenberg
    2 hours ago










  • $begingroup$
    How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
    $endgroup$
    – Max0815
    2 hours ago










  • $begingroup$
    @Max0815 I added something. See now.
    $endgroup$
    – Michael Rozenberg
    2 hours ago
















6












$begingroup$

There are the following identities.
$$sqrt{a+sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}$$ and
$$sqrt{a-sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}-sqrt{frac{a-sqrt{a^2-b}}{2}},$$
where all numbers under radicals they are non-negatives.



For example:
$$sqrt{5+2sqrt6}=sqrt{5+sqrt{24}}=sqrt{frac{5+sqrt{5^2-24}}{2}}+sqrt{frac{5-sqrt{5^2-24}}{2}}=sqrt3+sqrt2.$$
This is interesting, when $a$ and $b$ are rationals and $a^2-b$ is a square of a rational number.



The first identity is true because
$$left(sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}right)^2=$$
$$=frac{a+sqrt{a^2-b}}{2}+frac{a-sqrt{a^2-b}}{2}+2sqrt{frac{a+sqrt{a^2-b}}{2}}cdotsqrt{frac{a-sqrt{a^2-b}}{2}}=a+sqrt{b}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is interesting. I had never seen the identities you begin with.
    $endgroup$
    – Lubin
    3 hours ago












  • $begingroup$
    @Lubin same with me too.
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    We can prove it. It's not hard.
    $endgroup$
    – Michael Rozenberg
    2 hours ago










  • $begingroup$
    How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
    $endgroup$
    – Max0815
    2 hours ago










  • $begingroup$
    @Max0815 I added something. See now.
    $endgroup$
    – Michael Rozenberg
    2 hours ago














6












6








6





$begingroup$

There are the following identities.
$$sqrt{a+sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}$$ and
$$sqrt{a-sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}-sqrt{frac{a-sqrt{a^2-b}}{2}},$$
where all numbers under radicals they are non-negatives.



For example:
$$sqrt{5+2sqrt6}=sqrt{5+sqrt{24}}=sqrt{frac{5+sqrt{5^2-24}}{2}}+sqrt{frac{5-sqrt{5^2-24}}{2}}=sqrt3+sqrt2.$$
This is interesting, when $a$ and $b$ are rationals and $a^2-b$ is a square of a rational number.



The first identity is true because
$$left(sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}right)^2=$$
$$=frac{a+sqrt{a^2-b}}{2}+frac{a-sqrt{a^2-b}}{2}+2sqrt{frac{a+sqrt{a^2-b}}{2}}cdotsqrt{frac{a-sqrt{a^2-b}}{2}}=a+sqrt{b}.$$






share|cite|improve this answer











$endgroup$



There are the following identities.
$$sqrt{a+sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}$$ and
$$sqrt{a-sqrt{b}}=sqrt{frac{a+sqrt{a^2-b}}{2}}-sqrt{frac{a-sqrt{a^2-b}}{2}},$$
where all numbers under radicals they are non-negatives.



For example:
$$sqrt{5+2sqrt6}=sqrt{5+sqrt{24}}=sqrt{frac{5+sqrt{5^2-24}}{2}}+sqrt{frac{5-sqrt{5^2-24}}{2}}=sqrt3+sqrt2.$$
This is interesting, when $a$ and $b$ are rationals and $a^2-b$ is a square of a rational number.



The first identity is true because
$$left(sqrt{frac{a+sqrt{a^2-b}}{2}}+sqrt{frac{a-sqrt{a^2-b}}{2}}right)^2=$$
$$=frac{a+sqrt{a^2-b}}{2}+frac{a-sqrt{a^2-b}}{2}+2sqrt{frac{a+sqrt{a^2-b}}{2}}cdotsqrt{frac{a-sqrt{a^2-b}}{2}}=a+sqrt{b}.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 4 hours ago









Michael RozenbergMichael Rozenberg

104k1891196




104k1891196












  • $begingroup$
    This is interesting. I had never seen the identities you begin with.
    $endgroup$
    – Lubin
    3 hours ago












  • $begingroup$
    @Lubin same with me too.
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    We can prove it. It's not hard.
    $endgroup$
    – Michael Rozenberg
    2 hours ago










  • $begingroup$
    How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
    $endgroup$
    – Max0815
    2 hours ago










  • $begingroup$
    @Max0815 I added something. See now.
    $endgroup$
    – Michael Rozenberg
    2 hours ago


















  • $begingroup$
    This is interesting. I had never seen the identities you begin with.
    $endgroup$
    – Lubin
    3 hours ago












  • $begingroup$
    @Lubin same with me too.
    $endgroup$
    – Max0815
    3 hours ago










  • $begingroup$
    We can prove it. It's not hard.
    $endgroup$
    – Michael Rozenberg
    2 hours ago










  • $begingroup$
    How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
    $endgroup$
    – Max0815
    2 hours ago










  • $begingroup$
    @Max0815 I added something. See now.
    $endgroup$
    – Michael Rozenberg
    2 hours ago
















$begingroup$
This is interesting. I had never seen the identities you begin with.
$endgroup$
– Lubin
3 hours ago






$begingroup$
This is interesting. I had never seen the identities you begin with.
$endgroup$
– Lubin
3 hours ago














$begingroup$
@Lubin same with me too.
$endgroup$
– Max0815
3 hours ago




$begingroup$
@Lubin same with me too.
$endgroup$
– Max0815
3 hours ago












$begingroup$
We can prove it. It's not hard.
$endgroup$
– Michael Rozenberg
2 hours ago




$begingroup$
We can prove it. It's not hard.
$endgroup$
– Michael Rozenberg
2 hours ago












$begingroup$
How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
$endgroup$
– Max0815
2 hours ago




$begingroup$
How would you prove the first one @MichaelRozenberg? I can get the second on I think because it is conjugate of first, which should be easy.
$endgroup$
– Max0815
2 hours ago












$begingroup$
@Max0815 I added something. See now.
$endgroup$
– Michael Rozenberg
2 hours ago




$begingroup$
@Max0815 I added something. See now.
$endgroup$
– Michael Rozenberg
2 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119568%2fcomplicated-square-root-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

If I really need a card on my start hand, how many mulligans make sense? [duplicate]

Alcedinidae

Can an atomic nucleus contain both particles and antiparticles? [duplicate]