Tensorflow pre-trained embedding matrix part of graph





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















I am currently trying to use my own pre-trained word embeddings in my tensorflow model_fn, but after a single epoch, the model building fails due to the following error;



ValueError: Fetch argument <tf.Variable 'embedding/embeddings:0' shape=(86565, 300) dtype=float32_ref> cannot be interpreted a
s a Tensor. (Tensor Tensor("embedding/embeddings:0", shape=(86565, 300), dtype=float32_ref) is not an element of this graph.)


How do I modify my code in order to maintain the embeddings in the graph over several epochs? Should I be initializing them in a different way? Or outside of the model function?



def word_embeddings_matrix():

..... load my embeddings .....

return embedding_matrix


embedding_matrix = word_embeddings_matrix()


def model_fn(features, labels, mode, params):

vocab_table = lookup.index_table_from_file(vocabulary_file='dataset/vocab.csv', num_oov_buckets=1, default_value=-1)
text = features[commons.FEATURE_COL]
words = tf.string_split(text)
dense_words = tf.sparse_tensor_to_dense(words, default_value=commons.PAD_WORD)
word_ids = vocab_table.lookup(dense_words)

padding = tf.constant([[0, 0], [0, commons.MAX_DOCUMENT_LENGTH]])
# Pad all the word_ids entries to the maximum document length
word_ids_padded = tf.pad(word_ids, padding)
word_id_vector = tf.slice(word_ids_padded, [0, 0], [-1, commons.MAX_DOCUMENT_LENGTH])

embedding_matrix = word_embeddings_matrix()

if mode == tf.estimator.ModeKeys.TRAIN:
tf.keras.backend.set_learning_phase(True)
else:
tf.keras.backend.set_learning_phase(False)

# embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
# 10, input_length=commons.MAX_DOCUMENT_LENGTH)(word_id_vector)

embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
300,
weights=[embedding_matrix],
input_length=commons.MAX_DOCUMENT_LENGTH,
trainable=True)(word_id_vector)


conv = tf.keras.layers.Conv1D(filters=64, kernel_size=2, activation='relu')(embedded_sequences)
pool = tf.keras.layers.GlobalAveragePooling1D()(conv)
drop = tf.keras.layers.Dropout(0.5)(pool)

logits = tf.keras.layers.Dense(commons.TARGET_SIZE, activation=None)(drop)

predictions = tf.nn.softmax(logits)
prediction_indices = tf.argmax(predictions, axis=1)









share|improve this question





























    0















    I am currently trying to use my own pre-trained word embeddings in my tensorflow model_fn, but after a single epoch, the model building fails due to the following error;



    ValueError: Fetch argument <tf.Variable 'embedding/embeddings:0' shape=(86565, 300) dtype=float32_ref> cannot be interpreted a
    s a Tensor. (Tensor Tensor("embedding/embeddings:0", shape=(86565, 300), dtype=float32_ref) is not an element of this graph.)


    How do I modify my code in order to maintain the embeddings in the graph over several epochs? Should I be initializing them in a different way? Or outside of the model function?



    def word_embeddings_matrix():

    ..... load my embeddings .....

    return embedding_matrix


    embedding_matrix = word_embeddings_matrix()


    def model_fn(features, labels, mode, params):

    vocab_table = lookup.index_table_from_file(vocabulary_file='dataset/vocab.csv', num_oov_buckets=1, default_value=-1)
    text = features[commons.FEATURE_COL]
    words = tf.string_split(text)
    dense_words = tf.sparse_tensor_to_dense(words, default_value=commons.PAD_WORD)
    word_ids = vocab_table.lookup(dense_words)

    padding = tf.constant([[0, 0], [0, commons.MAX_DOCUMENT_LENGTH]])
    # Pad all the word_ids entries to the maximum document length
    word_ids_padded = tf.pad(word_ids, padding)
    word_id_vector = tf.slice(word_ids_padded, [0, 0], [-1, commons.MAX_DOCUMENT_LENGTH])

    embedding_matrix = word_embeddings_matrix()

    if mode == tf.estimator.ModeKeys.TRAIN:
    tf.keras.backend.set_learning_phase(True)
    else:
    tf.keras.backend.set_learning_phase(False)

    # embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
    # 10, input_length=commons.MAX_DOCUMENT_LENGTH)(word_id_vector)

    embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
    300,
    weights=[embedding_matrix],
    input_length=commons.MAX_DOCUMENT_LENGTH,
    trainable=True)(word_id_vector)


    conv = tf.keras.layers.Conv1D(filters=64, kernel_size=2, activation='relu')(embedded_sequences)
    pool = tf.keras.layers.GlobalAveragePooling1D()(conv)
    drop = tf.keras.layers.Dropout(0.5)(pool)

    logits = tf.keras.layers.Dense(commons.TARGET_SIZE, activation=None)(drop)

    predictions = tf.nn.softmax(logits)
    prediction_indices = tf.argmax(predictions, axis=1)









    share|improve this question

























      0












      0








      0








      I am currently trying to use my own pre-trained word embeddings in my tensorflow model_fn, but after a single epoch, the model building fails due to the following error;



      ValueError: Fetch argument <tf.Variable 'embedding/embeddings:0' shape=(86565, 300) dtype=float32_ref> cannot be interpreted a
      s a Tensor. (Tensor Tensor("embedding/embeddings:0", shape=(86565, 300), dtype=float32_ref) is not an element of this graph.)


      How do I modify my code in order to maintain the embeddings in the graph over several epochs? Should I be initializing them in a different way? Or outside of the model function?



      def word_embeddings_matrix():

      ..... load my embeddings .....

      return embedding_matrix


      embedding_matrix = word_embeddings_matrix()


      def model_fn(features, labels, mode, params):

      vocab_table = lookup.index_table_from_file(vocabulary_file='dataset/vocab.csv', num_oov_buckets=1, default_value=-1)
      text = features[commons.FEATURE_COL]
      words = tf.string_split(text)
      dense_words = tf.sparse_tensor_to_dense(words, default_value=commons.PAD_WORD)
      word_ids = vocab_table.lookup(dense_words)

      padding = tf.constant([[0, 0], [0, commons.MAX_DOCUMENT_LENGTH]])
      # Pad all the word_ids entries to the maximum document length
      word_ids_padded = tf.pad(word_ids, padding)
      word_id_vector = tf.slice(word_ids_padded, [0, 0], [-1, commons.MAX_DOCUMENT_LENGTH])

      embedding_matrix = word_embeddings_matrix()

      if mode == tf.estimator.ModeKeys.TRAIN:
      tf.keras.backend.set_learning_phase(True)
      else:
      tf.keras.backend.set_learning_phase(False)

      # embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
      # 10, input_length=commons.MAX_DOCUMENT_LENGTH)(word_id_vector)

      embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
      300,
      weights=[embedding_matrix],
      input_length=commons.MAX_DOCUMENT_LENGTH,
      trainable=True)(word_id_vector)


      conv = tf.keras.layers.Conv1D(filters=64, kernel_size=2, activation='relu')(embedded_sequences)
      pool = tf.keras.layers.GlobalAveragePooling1D()(conv)
      drop = tf.keras.layers.Dropout(0.5)(pool)

      logits = tf.keras.layers.Dense(commons.TARGET_SIZE, activation=None)(drop)

      predictions = tf.nn.softmax(logits)
      prediction_indices = tf.argmax(predictions, axis=1)









      share|improve this question














      I am currently trying to use my own pre-trained word embeddings in my tensorflow model_fn, but after a single epoch, the model building fails due to the following error;



      ValueError: Fetch argument <tf.Variable 'embedding/embeddings:0' shape=(86565, 300) dtype=float32_ref> cannot be interpreted a
      s a Tensor. (Tensor Tensor("embedding/embeddings:0", shape=(86565, 300), dtype=float32_ref) is not an element of this graph.)


      How do I modify my code in order to maintain the embeddings in the graph over several epochs? Should I be initializing them in a different way? Or outside of the model function?



      def word_embeddings_matrix():

      ..... load my embeddings .....

      return embedding_matrix


      embedding_matrix = word_embeddings_matrix()


      def model_fn(features, labels, mode, params):

      vocab_table = lookup.index_table_from_file(vocabulary_file='dataset/vocab.csv', num_oov_buckets=1, default_value=-1)
      text = features[commons.FEATURE_COL]
      words = tf.string_split(text)
      dense_words = tf.sparse_tensor_to_dense(words, default_value=commons.PAD_WORD)
      word_ids = vocab_table.lookup(dense_words)

      padding = tf.constant([[0, 0], [0, commons.MAX_DOCUMENT_LENGTH]])
      # Pad all the word_ids entries to the maximum document length
      word_ids_padded = tf.pad(word_ids, padding)
      word_id_vector = tf.slice(word_ids_padded, [0, 0], [-1, commons.MAX_DOCUMENT_LENGTH])

      embedding_matrix = word_embeddings_matrix()

      if mode == tf.estimator.ModeKeys.TRAIN:
      tf.keras.backend.set_learning_phase(True)
      else:
      tf.keras.backend.set_learning_phase(False)

      # embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
      # 10, input_length=commons.MAX_DOCUMENT_LENGTH)(word_id_vector)

      embedded_sequences = tf.keras.layers.Embedding(params.N_WORDS,
      300,
      weights=[embedding_matrix],
      input_length=commons.MAX_DOCUMENT_LENGTH,
      trainable=True)(word_id_vector)


      conv = tf.keras.layers.Conv1D(filters=64, kernel_size=2, activation='relu')(embedded_sequences)
      pool = tf.keras.layers.GlobalAveragePooling1D()(conv)
      drop = tf.keras.layers.Dropout(0.5)(pool)

      logits = tf.keras.layers.Dense(commons.TARGET_SIZE, activation=None)(drop)

      predictions = tf.nn.softmax(logits)
      prediction_indices = tf.argmax(predictions, axis=1)






      python tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 '18 at 16:00









      chattrat423chattrat423

      2681319




      2681319
























          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449742%2ftensorflow-pre-trained-embedding-matrix-part-of-graph%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449742%2ftensorflow-pre-trained-embedding-matrix-part-of-graph%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          RAC Tourist Trophy