Different derivations of the value of $prod_{0leq j<k<n}(eta^k-eta^j)$
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
nt.number-theory gr.group-theory soft-question teaching elementary-proofs
add a comment |
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
nt.number-theory gr.group-theory soft-question teaching elementary-proofs
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
5
can you change to a more specific title?
– YCor
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago
add a comment |
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
nt.number-theory gr.group-theory soft-question teaching elementary-proofs
Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.
If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$
nt.number-theory gr.group-theory soft-question teaching elementary-proofs
nt.number-theory gr.group-theory soft-question teaching elementary-proofs
edited 2 days ago
asked Dec 28 at 5:55
T. Amdeberhan
17.1k228126
17.1k228126
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
5
can you change to a more specific title?
– YCor
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago
add a comment |
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
5
can you change to a more specific title?
– YCor
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
5
5
can you change to a more specific title?
– YCor
2 days ago
can you change to a more specific title?
– YCor
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:
Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
begin{align*}
log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
& = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
& = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
end{align*}
Call $S$ the second sum. We have
begin{align*}
S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
& = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
end{align*}
The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
begin{equation*}
mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
end{equation*}
From there, it is not difficult to finish the computation
begin{align*}
log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
end{align*}
which gives the desired value for $P$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2fdifferent-derivations-of-the-value-of-prod-0-leq-jkn-etak-etaj%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
add a comment |
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
We first find the norm; we then determine the argument.
Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$
$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$
All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.
Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.
$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$
$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$
$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$
$= (n - 1) frac{n (n - 1)}{2}$
We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:
The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.
answered 2 days ago
community wiki
user44191
add a comment |
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
add a comment |
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.
answered 2 days ago
Alexey Ustinov
6,72745779
6,72745779
add a comment |
add a comment |
Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:
Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
begin{align*}
log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
& = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
& = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
end{align*}
Call $S$ the second sum. We have
begin{align*}
S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
& = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
end{align*}
The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
begin{equation*}
mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
end{equation*}
From there, it is not difficult to finish the computation
begin{align*}
log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
end{align*}
which gives the desired value for $P$.
add a comment |
Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:
Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
begin{align*}
log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
& = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
& = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
end{align*}
Call $S$ the second sum. We have
begin{align*}
S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
& = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
end{align*}
The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
begin{equation*}
mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
end{equation*}
From there, it is not difficult to finish the computation
begin{align*}
log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
end{align*}
which gives the desired value for $P$.
add a comment |
Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:
Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
begin{align*}
log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
& = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
& = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
end{align*}
Call $S$ the second sum. We have
begin{align*}
S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
& = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
end{align*}
The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
begin{equation*}
mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
end{equation*}
From there, it is not difficult to finish the computation
begin{align*}
log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
end{align*}
which gives the desired value for $P$.
Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:
Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
begin{align*}
log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
& = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
& = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
end{align*}
Call $S$ the second sum. We have
begin{align*}
S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
& = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
end{align*}
The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
begin{equation*}
mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
end{equation*}
From there, it is not difficult to finish the computation
begin{align*}
log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
end{align*}
which gives the desired value for $P$.
answered 8 hours ago
François Brunault
12.6k23568
12.6k23568
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2fdifferent-derivations-of-the-value-of-prod-0-leq-jkn-etak-etaj%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04
It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07
5
can you change to a more specific title?
– YCor
2 days ago
I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago
I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago