Different derivations of the value of $prod_{0leq j<k<n}(eta^k-eta^j)$












4














Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.




If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$











share|cite|improve this question
























  • How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
    – user44191
    Dec 28 at 6:04










  • It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
    – T. Amdeberhan
    Dec 28 at 6:07








  • 5




    can you change to a more specific title?
    – YCor
    2 days ago










  • I have changed the title to a more specific one, given that the question is now in HNQ.
    – Wojowu
    2 days ago










  • I think that "number theory" is more suitable here than "complex variables"
    – Alexey Ustinov
    2 days ago
















4














Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.




If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$











share|cite|improve this question
























  • How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
    – user44191
    Dec 28 at 6:04










  • It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
    – T. Amdeberhan
    Dec 28 at 6:07








  • 5




    can you change to a more specific title?
    – YCor
    2 days ago










  • I have changed the title to a more specific one, given that the question is now in HNQ.
    – Wojowu
    2 days ago










  • I think that "number theory" is more suitable here than "complex variables"
    – Alexey Ustinov
    2 days ago














4












4








4


1





Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.




If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$











share|cite|improve this question















Let $eta=e^{frac{2pi i}n}$, an $n$-th root of unity. For pedagogical reasons and inspiration, I ask to see different proofs (be it elementary, sophisticated, theoretical, etc) for the following product evaluation.




If $T(n)=frac{(3n-2)(n-1)}2$ and $i=sqrt{-1}$ then
$$prod_{j<k}^{0,n-1}(eta^k-eta^j)=n^{frac{n}2}i^{T(n)}.$$








nt.number-theory gr.group-theory soft-question teaching elementary-proofs






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago

























asked Dec 28 at 5:55









T. Amdeberhan

17.1k228126




17.1k228126












  • How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
    – user44191
    Dec 28 at 6:04










  • It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
    – T. Amdeberhan
    Dec 28 at 6:07








  • 5




    can you change to a more specific title?
    – YCor
    2 days ago










  • I have changed the title to a more specific one, given that the question is now in HNQ.
    – Wojowu
    2 days ago










  • I think that "number theory" is more suitable here than "complex variables"
    – Alexey Ustinov
    2 days ago


















  • How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
    – user44191
    Dec 28 at 6:04










  • It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
    – T. Amdeberhan
    Dec 28 at 6:07








  • 5




    can you change to a more specific title?
    – YCor
    2 days ago










  • I have changed the title to a more specific one, given that the question is now in HNQ.
    – Wojowu
    2 days ago










  • I think that "number theory" is more suitable here than "complex variables"
    – Alexey Ustinov
    2 days ago
















How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04




How precise would you like the conclusion? Would getting the norm and the parity of $T(n)$ be enough, or do you want $T(n)$ exactly?
– user44191
Dec 28 at 6:04












It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07






It'd be nice to get it exactly, however even getting to what you described does add insight into the discussion. So, you're welcome to present it.
– T. Amdeberhan
Dec 28 at 6:07






5




5




can you change to a more specific title?
– YCor
2 days ago




can you change to a more specific title?
– YCor
2 days ago












I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago




I have changed the title to a more specific one, given that the question is now in HNQ.
– Wojowu
2 days ago












I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago




I think that "number theory" is more suitable here than "complex variables"
– Alexey Ustinov
2 days ago










3 Answers
3






active

oldest

votes


















7














We first find the norm; we then determine the argument.



Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$



$= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$



All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.



Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.



$sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$



$= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$



$= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$



$= (n - 1) frac{n (n - 1)}{2}$



We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:



The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.






share|cite|improve this answer































    7














    Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.






    share|cite|improve this answer





























      0














      Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:



      Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
      begin{align*}
      log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
      & = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
      & = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
      end{align*}

      Call $S$ the second sum. We have
      begin{align*}
      S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
      & = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
      end{align*}

      The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
      begin{equation*}
      mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
      end{equation*}

      From there, it is not difficult to finish the computation
      begin{align*}
      log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
      end{align*}

      which gives the desired value for $P$.






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "504"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2fdifferent-derivations-of-the-value-of-prod-0-leq-jkn-etak-etaj%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        7














        We first find the norm; we then determine the argument.



        Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$



        $= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$



        All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.



        Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.



        $sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$



        $= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$



        $= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$



        $= (n - 1) frac{n (n - 1)}{2}$



        We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:



        The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.






        share|cite|improve this answer




























          7














          We first find the norm; we then determine the argument.



          Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$



          $= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$



          All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.



          Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.



          $sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$



          $= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$



          $= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$



          $= (n - 1) frac{n (n - 1)}{2}$



          We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:



          The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.






          share|cite|improve this answer


























            7












            7








            7






            We first find the norm; we then determine the argument.



            Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$



            $= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$



            All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.



            Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.



            $sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$



            $= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$



            $= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$



            $= (n - 1) frac{n (n - 1)}{2}$



            We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:



            The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.






            share|cite|improve this answer














            We first find the norm; we then determine the argument.



            Call the product you wrote $A_n$. Then $A_n^2 = prod_{j<k}^{0,n-1} (eta^k - eta^j)^2 = Disc(x^n - 1) = (-1)^{frac{n (n -1)}{2}}Res(x^n - 1, n x^{n - 1})$



            $= (-1)^{frac{n(n-1)}{2}} n^n prod_{0 leq i < n, 0 leq j < n-1} (eta^i - 0)$



            All terms in the expression except $n^n$ have norm $1$, so we have that $|A_n| = n^{frac{n}{2}}$. We therefore only need to figure out the argument of $A_n$.



            Let $eta' = e^frac{2 pi i}{2n}$ be the square root of $eta$. We can rewrite $A_n = prod_{0leq j<k<n} eta'^{k + j} (eta'^{k - j} - eta'^{j - k})$. Note that the second term is a difference of (unequal) conjugates with positive imaginary part, and therefore will always have argument $frac{pi}{2}$. So let us concentrate on the argument of the first term, $prod_{0 leq j < k < n} eta'^{k +j}$. We can do this by finding $sum_{0 leq j < k < n} j + k$.



            $sum_{0 leq j < k < n} j + k = left(sum_{0 leq j < k < n} jright) + left(sum_{0 leq j < k < n} kright)$



            $= left(sum_{0 leq j <n} (n - j - 1)jright) + left(sum_{0leq k<n} k*kright)$



            $= sum_{0 leq j < n} (n - j - 1)j + j*j = sum_{0 leq j < n} (n - 1)j$



            $= (n - 1) frac{n (n - 1)}{2}$



            We therefore end up with an argument of $frac{n(n - 1)}{2} frac{pi}{2} + frac{n (n - 1)^2}{2} frac{2 pi}{2n} = frac{(3n^2 - 5n + 2)pi}{4}$. We finally have that:



            The norm of $A_n$ is $n^frac{n}{2}$, and the argument is $frac{(3n^2 - 5n + 2)pi}{4}$. Correspondingly, we have that $A_n = n^{frac{n}{2}} i^{T(n)}$, as desired.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            answered 2 days ago


























            community wiki





            user44191
























                7














                Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.






                share|cite|improve this answer


























                  7














                  Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.






                  share|cite|improve this answer
























                    7












                    7








                    7






                    Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.






                    share|cite|improve this answer












                    Your are asking about determinant of the Schur Matrix. So you can use original Schur's article or another classical expositions mentioned at Mathworld.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 days ago









                    Alexey Ustinov

                    6,72745779




                    6,72745779























                        0














                        Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:



                        Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
                        begin{align*}
                        log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
                        & = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
                        & = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
                        end{align*}

                        Call $S$ the second sum. We have
                        begin{align*}
                        S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
                        & = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
                        end{align*}

                        The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
                        begin{equation*}
                        mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
                        end{equation*}

                        From there, it is not difficult to finish the computation
                        begin{align*}
                        log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
                        end{align*}

                        which gives the desired value for $P$.






                        share|cite|improve this answer


























                          0














                          Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:



                          Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
                          begin{align*}
                          log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
                          & = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
                          & = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
                          end{align*}

                          Call $S$ the second sum. We have
                          begin{align*}
                          S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
                          & = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
                          end{align*}

                          The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
                          begin{equation*}
                          mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
                          end{equation*}

                          From there, it is not difficult to finish the computation
                          begin{align*}
                          log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
                          end{align*}

                          which gives the desired value for $P$.






                          share|cite|improve this answer
























                            0












                            0








                            0






                            Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:



                            Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
                            begin{align*}
                            log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
                            & = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
                            & = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
                            end{align*}

                            Call $S$ the second sum. We have
                            begin{align*}
                            S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
                            & = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
                            end{align*}

                            The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
                            begin{equation*}
                            mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
                            end{equation*}

                            From there, it is not difficult to finish the computation
                            begin{align*}
                            log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
                            end{align*}

                            which gives the desired value for $P$.






                            share|cite|improve this answer












                            Here is a proof using the logarithmic function $mathrm{Li}_1(z)=-log(1-z)$:



                            Let $P= displaystyleprod_{substack{j,k=0 \ j<k}}^{n-1} (eta^k-eta^j)$. Take the logarithm:
                            begin{align*}
                            log P & = sum_{j<k} log eta^k - sum_{j<k} mathrm{Li}_1(eta^{j-k}) \
                            & = sum_{k=0}^{n-1} k cdot frac{2pi i k}{n} - sum_{a=1}^{n-1} (n-a) mathrm{Li}_1(eta^{-a}) \
                            & = frac{2pi i}{n} sum_{k=0}^{n-1} k^2 - sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a).
                            end{align*}

                            Call $S$ the second sum. We have
                            begin{align*}
                            S & = sum_{a=1}^{n-1} a mathrm{Li}_1(eta^a) = frac12 sum_{a=1}^{n-1} bigl(a mathrm{Li}_1(eta^a)+(n-a)mathrm{Li}_1(eta^{-a})bigr)\
                            & = frac{n}{2} sum_{a=1}^{n-1} mathrm{Li}_1(eta^a) + sum_{a=1}^{n-1} a cdot bigl(mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a})bigr)
                            end{align*}

                            The first sum is easy to compute and is equal to $-log n$. Regarding the second sum, the classical Fourier expansion for the Bernoulli polynomial $B_1(x)=x-frac12$ on $(0,1)$ gives
                            begin{equation*}
                            mathrm{Li}_1(eta^a)-mathrm{Li}_1(eta^{-a}) = 2pi i bigl(frac12 - frac{a}{n}bigr).
                            end{equation*}

                            From there, it is not difficult to finish the computation
                            begin{align*}
                            log P = frac{n}{2} log n - frac{pi i}{4} n(n-1) + frac{3pi i}{n} sum_{k=1}^{n-1} k^2 = frac{n}{2} log n + frac{pi i}{4} (n-1)(3n-2)
                            end{align*}

                            which gives the desired value for $P$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 8 hours ago









                            François Brunault

                            12.6k23568




                            12.6k23568






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to MathOverflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319620%2fdifferent-derivations-of-the-value-of-prod-0-leq-jkn-etak-etaj%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                                Alcedinidae

                                Origin of the phrase “under your belt”?