Determinant of a matrix of the form $M = I + xx^t$












5












$begingroup$


$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$



So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Can you determine the characteristic polynomial of $M-I$?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 20:24










  • $begingroup$
    Could you give me some more clue about the polynomial?
    $endgroup$
    – Yibei He
    Jan 22 at 20:30
















5












$begingroup$


$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$



So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Can you determine the characteristic polynomial of $M-I$?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 20:24










  • $begingroup$
    Could you give me some more clue about the polynomial?
    $endgroup$
    – Yibei He
    Jan 22 at 20:30














5












5








5


1



$begingroup$


$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$



So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.










share|cite|improve this question











$endgroup$




$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$



So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.







linear-algebra determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 22 at 23:02









Silverfish

1,0271223




1,0271223










asked Jan 22 at 20:21









Yibei HeYibei He

3139




3139








  • 1




    $begingroup$
    Can you determine the characteristic polynomial of $M-I$?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 20:24










  • $begingroup$
    Could you give me some more clue about the polynomial?
    $endgroup$
    – Yibei He
    Jan 22 at 20:30














  • 1




    $begingroup$
    Can you determine the characteristic polynomial of $M-I$?
    $endgroup$
    – Lord Shark the Unknown
    Jan 22 at 20:24










  • $begingroup$
    Could you give me some more clue about the polynomial?
    $endgroup$
    – Yibei He
    Jan 22 at 20:30








1




1




$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24




$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24












$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30




$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30










3 Answers
3






active

oldest

votes


















8












$begingroup$

You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).



For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have



$$
M = I + x x^T
$$



hence, in view of the aforementioned lemma,



$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$






share|cite|improve this answer











$endgroup$





















    7












    $begingroup$

    Consider the matrix
    $$N=M-I.$$
    It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
    has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
    $$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
    Now
    $$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
      $$
      M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
      x_nmathbf{x}&1+x_n^2}.
      $$

      Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
      $$
      detleft(M_nright)=detpmatrix{M_{n-1}& 0\
      x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
      x_nmathbf{x}&x_n^2}.
      $$

      The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
      $$
      detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
      mathbf{x}&1}.
      $$

      The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083652%2fdeterminant-of-a-matrix-of-the-form-m-i-xxt%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        8












        $begingroup$

        You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).



        For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have



        $$
        M = I + x x^T
        $$



        hence, in view of the aforementioned lemma,



        $$
        det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
        $$






        share|cite|improve this answer











        $endgroup$


















          8












          $begingroup$

          You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).



          For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have



          $$
          M = I + x x^T
          $$



          hence, in view of the aforementioned lemma,



          $$
          det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
          $$






          share|cite|improve this answer











          $endgroup$
















            8












            8








            8





            $begingroup$

            You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).



            For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have



            $$
            M = I + x x^T
            $$



            hence, in view of the aforementioned lemma,



            $$
            det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
            $$






            share|cite|improve this answer











            $endgroup$



            You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).



            For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have



            $$
            M = I + x x^T
            $$



            hence, in view of the aforementioned lemma,



            $$
            det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
            $$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 23 at 11:37









            Rodrigo de Azevedo

            13.1k41960




            13.1k41960










            answered Jan 22 at 20:47









            HaykHayk

            2,6371214




            2,6371214























                7












                $begingroup$

                Consider the matrix
                $$N=M-I.$$
                It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
                has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
                $$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
                Now
                $$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$






                share|cite|improve this answer









                $endgroup$


















                  7












                  $begingroup$

                  Consider the matrix
                  $$N=M-I.$$
                  It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
                  has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
                  $$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
                  Now
                  $$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$






                  share|cite|improve this answer









                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    Consider the matrix
                    $$N=M-I.$$
                    It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
                    has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
                    $$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
                    Now
                    $$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$






                    share|cite|improve this answer









                    $endgroup$



                    Consider the matrix
                    $$N=M-I.$$
                    It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
                    has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
                    $$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
                    Now
                    $$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 22 at 20:35









                    Lord Shark the UnknownLord Shark the Unknown

                    106k1161133




                    106k1161133























                        2












                        $begingroup$

                        Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
                        $$
                        M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
                        x_nmathbf{x}&1+x_n^2}.
                        $$

                        Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
                        $$
                        detleft(M_nright)=detpmatrix{M_{n-1}& 0\
                        x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
                        x_nmathbf{x}&x_n^2}.
                        $$

                        The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
                        $$
                        detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
                        mathbf{x}&1}.
                        $$

                        The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
                          $$
                          M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
                          x_nmathbf{x}&1+x_n^2}.
                          $$

                          Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
                          $$
                          detleft(M_nright)=detpmatrix{M_{n-1}& 0\
                          x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
                          x_nmathbf{x}&x_n^2}.
                          $$

                          The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
                          $$
                          detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
                          mathbf{x}&1}.
                          $$

                          The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
                            $$
                            M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
                            x_nmathbf{x}&1+x_n^2}.
                            $$

                            Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
                            $$
                            detleft(M_nright)=detpmatrix{M_{n-1}& 0\
                            x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
                            x_nmathbf{x}&x_n^2}.
                            $$

                            The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
                            $$
                            detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
                            mathbf{x}&1}.
                            $$

                            The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.






                            share|cite|improve this answer









                            $endgroup$



                            Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
                            $$
                            M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
                            x_nmathbf{x}&1+x_n^2}.
                            $$

                            Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
                            $$
                            detleft(M_nright)=detpmatrix{M_{n-1}& 0\
                            x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
                            x_nmathbf{x}&x_n^2}.
                            $$

                            The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
                            $$
                            detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
                            mathbf{x}&1}.
                            $$

                            The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 22 at 21:46









                            Davide GiraudoDavide Giraudo

                            127k17154268




                            127k17154268






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083652%2fdeterminant-of-a-matrix-of-the-form-m-i-xxt%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                                Alcedinidae

                                Origin of the phrase “under your belt”?