How to evaluate the limit where something is raised to a power of x?












7












$begingroup$


I am attempting to evaluate the following limit:



$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$



I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.



I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.



Thank you.










share|cite|improve this question







New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 4




    $begingroup$
    Try taking the limit of the logarithm of the expression.
    $endgroup$
    – John Wayland Bales
    13 hours ago
















7












$begingroup$


I am attempting to evaluate the following limit:



$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$



I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.



I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.



Thank you.










share|cite|improve this question







New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 4




    $begingroup$
    Try taking the limit of the logarithm of the expression.
    $endgroup$
    – John Wayland Bales
    13 hours ago














7












7








7


0



$begingroup$


I am attempting to evaluate the following limit:



$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$



I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.



I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.



Thank you.










share|cite|improve this question







New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I am attempting to evaluate the following limit:



$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$



I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.



I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.



Thank you.







calculus limits






share|cite|improve this question







New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 13 hours ago









jfkdasjfkjfkdasjfk

383




383




New contributor




jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






jfkdasjfk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 4




    $begingroup$
    Try taking the limit of the logarithm of the expression.
    $endgroup$
    – John Wayland Bales
    13 hours ago














  • 4




    $begingroup$
    Try taking the limit of the logarithm of the expression.
    $endgroup$
    – John Wayland Bales
    13 hours ago








4




4




$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago




$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago










5 Answers
5






active

oldest

votes


















14












$begingroup$

Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you this helped a lot!
    $endgroup$
    – jfkdasjfk
    12 hours ago



















8












$begingroup$

$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
      $endgroup$
      – Pedro
      4 hours ago



















    1












    $begingroup$

    Hint:



    Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.



    $$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).



      Writing the limit as



      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have



      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
      \=e^{lim_{xtoinfty}x/f(x)}.$$





      In the given case, we have $f(x)=-(x+8)/5.$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        What about "other powers" with the form "$infty^0$"?
        $endgroup$
        – aschepler
        5 hours ago











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136503%2fhow-to-evaluate-the-limit-where-something-is-raised-to-a-power-of-x%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      14












      $begingroup$

      Hint. Note that
      $$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
      Moreover, for $anot=0$, after letting $t=x/a$ we have that
      $$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
      where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Thank you this helped a lot!
        $endgroup$
        – jfkdasjfk
        12 hours ago
















      14












      $begingroup$

      Hint. Note that
      $$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
      Moreover, for $anot=0$, after letting $t=x/a$ we have that
      $$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
      where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Thank you this helped a lot!
        $endgroup$
        – jfkdasjfk
        12 hours ago














      14












      14








      14





      $begingroup$

      Hint. Note that
      $$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
      Moreover, for $anot=0$, after letting $t=x/a$ we have that
      $$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
      where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.






      share|cite|improve this answer









      $endgroup$



      Hint. Note that
      $$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
      Moreover, for $anot=0$, after letting $t=x/a$ we have that
      $$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
      where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 12 hours ago









      Robert ZRobert Z

      99.4k1068140




      99.4k1068140












      • $begingroup$
        Thank you this helped a lot!
        $endgroup$
        – jfkdasjfk
        12 hours ago


















      • $begingroup$
        Thank you this helped a lot!
        $endgroup$
        – jfkdasjfk
        12 hours ago
















      $begingroup$
      Thank you this helped a lot!
      $endgroup$
      – jfkdasjfk
      12 hours ago




      $begingroup$
      Thank you this helped a lot!
      $endgroup$
      – jfkdasjfk
      12 hours ago











      8












      $begingroup$

      $$=lim_{xto infty} (1-frac{5}{x})^x$$
      $$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
      $$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
      Now in order to evaluate
      $$=lim_{xto infty} xln{(1-frac{5}{x})}$$
      $$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
      One can use L'Hôpitals rule giving
      $$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
      $$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
      $$=-5$$
      Hence the initial limit is
      $$e^{-5}=frac{1}{e^5}$$






      share|cite|improve this answer









      $endgroup$


















        8












        $begingroup$

        $$=lim_{xto infty} (1-frac{5}{x})^x$$
        $$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
        $$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
        Now in order to evaluate
        $$=lim_{xto infty} xln{(1-frac{5}{x})}$$
        $$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
        One can use L'Hôpitals rule giving
        $$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
        $$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
        $$=-5$$
        Hence the initial limit is
        $$e^{-5}=frac{1}{e^5}$$






        share|cite|improve this answer









        $endgroup$
















          8












          8








          8





          $begingroup$

          $$=lim_{xto infty} (1-frac{5}{x})^x$$
          $$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
          $$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
          Now in order to evaluate
          $$=lim_{xto infty} xln{(1-frac{5}{x})}$$
          $$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
          One can use L'Hôpitals rule giving
          $$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
          $$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
          $$=-5$$
          Hence the initial limit is
          $$e^{-5}=frac{1}{e^5}$$






          share|cite|improve this answer









          $endgroup$



          $$=lim_{xto infty} (1-frac{5}{x})^x$$
          $$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
          $$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
          Now in order to evaluate
          $$=lim_{xto infty} xln{(1-frac{5}{x})}$$
          $$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
          One can use L'Hôpitals rule giving
          $$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
          $$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
          $$=-5$$
          Hence the initial limit is
          $$e^{-5}=frac{1}{e^5}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 12 hours ago









          Peter ForemanPeter Foreman

          2,8871214




          2,8871214























              2












              $begingroup$

              Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
                $endgroup$
                – Pedro
                4 hours ago
















              2












              $begingroup$

              Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
                $endgroup$
                – Pedro
                4 hours ago














              2












              2








              2





              $begingroup$

              Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.






              share|cite|improve this answer









              $endgroup$



              Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 7 hours ago









              AcccumulationAcccumulation

              7,0852619




              7,0852619












              • $begingroup$
                In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
                $endgroup$
                – Pedro
                4 hours ago


















              • $begingroup$
                In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
                $endgroup$
                – Pedro
                4 hours ago
















              $begingroup$
              In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
              $endgroup$
              – Pedro
              4 hours ago




              $begingroup$
              In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
              $endgroup$
              – Pedro
              4 hours ago











              1












              $begingroup$

              Hint:



              Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.



              $$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint:



                Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.



                $$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint:



                  Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.



                  $$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.



                  $$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 12 hours ago









                  Paras KhoslaParas Khosla

                  1,627219




                  1,627219























                      1












                      $begingroup$

                      This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).



                      Writing the limit as



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
                      \=e^{lim_{xtoinfty}x/f(x)}.$$





                      In the given case, we have $f(x)=-(x+8)/5.$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        What about "other powers" with the form "$infty^0$"?
                        $endgroup$
                        – aschepler
                        5 hours ago
















                      1












                      $begingroup$

                      This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).



                      Writing the limit as



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
                      \=e^{lim_{xtoinfty}x/f(x)}.$$





                      In the given case, we have $f(x)=-(x+8)/5.$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        What about "other powers" with the form "$infty^0$"?
                        $endgroup$
                        – aschepler
                        5 hours ago














                      1












                      1








                      1





                      $begingroup$

                      This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).



                      Writing the limit as



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
                      \=e^{lim_{xtoinfty}x/f(x)}.$$





                      In the given case, we have $f(x)=-(x+8)/5.$






                      share|cite|improve this answer









                      $endgroup$



                      This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).



                      Writing the limit as



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have



                      $$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
                      \=e^{lim_{xtoinfty}x/f(x)}.$$





                      In the given case, we have $f(x)=-(x+8)/5.$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 7 hours ago









                      Yves DaoustYves Daoust

                      129k676227




                      129k676227












                      • $begingroup$
                        What about "other powers" with the form "$infty^0$"?
                        $endgroup$
                        – aschepler
                        5 hours ago


















                      • $begingroup$
                        What about "other powers" with the form "$infty^0$"?
                        $endgroup$
                        – aschepler
                        5 hours ago
















                      $begingroup$
                      What about "other powers" with the form "$infty^0$"?
                      $endgroup$
                      – aschepler
                      5 hours ago




                      $begingroup$
                      What about "other powers" with the form "$infty^0$"?
                      $endgroup$
                      – aschepler
                      5 hours ago










                      jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.













                      jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.












                      jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136503%2fhow-to-evaluate-the-limit-where-something-is-raised-to-a-power-of-x%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                      Alcedinidae

                      Origin of the phrase “under your belt”?