How to evaluate the limit where something is raised to a power of x?
$begingroup$
I am attempting to evaluate the following limit:
$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$
I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.
I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.
Thank you.
calculus limits
New contributor
$endgroup$
add a comment |
$begingroup$
I am attempting to evaluate the following limit:
$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$
I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.
I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.
Thank you.
calculus limits
New contributor
$endgroup$
4
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago
add a comment |
$begingroup$
I am attempting to evaluate the following limit:
$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$
I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.
I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.
Thank you.
calculus limits
New contributor
$endgroup$
I am attempting to evaluate the following limit:
$$lim_{xto infty} Biggl({x+3over x+8}Biggl)^x$$
I was wondering if anyone could share some strategies for evaluating limits raised to a power of x, as I have never encountered these before.
I have found the answer to be ${1over e^5}$, but I am unsure how to arrive at this answer.
Thank you.
calculus limits
calculus limits
New contributor
New contributor
New contributor
asked 13 hours ago
jfkdasjfkjfkdasjfk
383
383
New contributor
New contributor
4
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago
add a comment |
4
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago
4
4
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.
$endgroup$
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
add a comment |
$begingroup$
$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$
$endgroup$
add a comment |
$begingroup$
Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.
$endgroup$
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
add a comment |
$begingroup$
Hint:
Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.
$$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$
$endgroup$
add a comment |
$begingroup$
This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).
Writing the limit as
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
\=e^{lim_{xtoinfty}x/f(x)}.$$
In the given case, we have $f(x)=-(x+8)/5.$
$endgroup$
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136503%2fhow-to-evaluate-the-limit-where-something-is-raised-to-a-power-of-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.
$endgroup$
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
add a comment |
$begingroup$
Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.
$endgroup$
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
add a comment |
$begingroup$
Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.
$endgroup$
Hint. Note that
$$Biggl({x+3over x+8}Biggl)^x=frac{(1+frac{3}{x})^x}{(1+frac{8}{x})^x}.$$
Moreover, for $anot=0$, after letting $t=x/a$ we have that
$$lim_{xto infty}(1+frac{a}{x})^x=lim_{tto infty}left(1+frac{1}{t}right)^{ta}=left(lim_{tto infty}left(1+frac{1}{t}right)^tright)^a=e^a.$$
where we used the limit which defines the Napier's constant $e$: $lim_{tto infty}left(1+frac{1}{t}right)^t=e$.
answered 12 hours ago
Robert ZRobert Z
99.4k1068140
99.4k1068140
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
add a comment |
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
$begingroup$
Thank you this helped a lot!
$endgroup$
– jfkdasjfk
12 hours ago
add a comment |
$begingroup$
$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$
$endgroup$
add a comment |
$begingroup$
$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$
$endgroup$
add a comment |
$begingroup$
$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$
$endgroup$
$$=lim_{xto infty} (1-frac{5}{x})^x$$
$$=lim_{xto infty} e^{xln{(1-frac{5}{x})}}$$
$$=e^{lim_{xto infty} xln{(1-frac{5}{x})}}$$
Now in order to evaluate
$$=lim_{xto infty} xln{(1-frac{5}{x})}$$
$$=lim_{xto infty} frac{ln{(1-frac{5}{x})}}{(frac{1}{x})}$$
One can use L'Hôpitals rule giving
$$=lim_{xto infty} frac{(frac{frac{5}{x^2}}{1-frac{5}{x}})}{(-frac{1}{x^2})}$$
$$=lim_{xto infty} (-frac{5}{1-frac{5}{x}})$$
$$=-5$$
Hence the initial limit is
$$e^{-5}=frac{1}{e^5}$$
answered 12 hours ago
Peter ForemanPeter Foreman
2,8871214
2,8871214
add a comment |
add a comment |
$begingroup$
Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.
$endgroup$
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
add a comment |
$begingroup$
Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.
$endgroup$
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
add a comment |
$begingroup$
Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.
$endgroup$
Take $u= x+8$. Then it's $(frac {u-5}u)^{u-8} = left ( 1-frac 5u right)^{u-8}$. Since we're taking the limit as we go to infinity, we can ignore the $-8$. Then after another substitution $v=-frac u 5$, we have $( 1+frac 1v)^{-5v}=(( 1+frac 1v)^{v})^{-5}$, and $( 1+frac 1v)^{v}$ goes to $e$.
answered 7 hours ago
AcccumulationAcccumulation
7,0852619
7,0852619
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
add a comment |
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
$begingroup$
In order to avoid mistakes like $$lim_{xto infty}left ( e^{x-8}-frac{e^x}{e^8}right)=lim_{xto infty}left ( e^{x}-frac{e^x}{e^8}right),$$ could you explain the precise meaning of "Since we're taking the limit as we go to infinity, we can ignore the $-8$"?
$endgroup$
– Pedro
4 hours ago
add a comment |
$begingroup$
Hint:
Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.
$$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$
$endgroup$
add a comment |
$begingroup$
Hint:
Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.
$$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$
$endgroup$
add a comment |
$begingroup$
Hint:
Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.
$$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$
$endgroup$
Hint:
Take the logarithm on both sides and use the fact that $exp x$ and $ln x$ are inverse functions i.e. $f(x)=exp ln f(x)$.
$$left(dfrac{x+3}{x+8}right)^x=exp xln left(dfrac{x+3}{x+8}right)$$
answered 12 hours ago
Paras KhoslaParas Khosla
1,627219
1,627219
add a comment |
add a comment |
$begingroup$
This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).
Writing the limit as
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
\=e^{lim_{xtoinfty}x/f(x)}.$$
In the given case, we have $f(x)=-(x+8)/5.$
$endgroup$
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
add a comment |
$begingroup$
This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).
Writing the limit as
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
\=e^{lim_{xtoinfty}x/f(x)}.$$
In the given case, we have $f(x)=-(x+8)/5.$
$endgroup$
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
add a comment |
$begingroup$
This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).
Writing the limit as
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
\=e^{lim_{xtoinfty}x/f(x)}.$$
In the given case, we have $f(x)=-(x+8)/5.$
$endgroup$
This is an indeterminate form $1^{infty}$ (other powers usually Raise no difficulty).
Writing the limit as
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x$$ where $f$ tends to $infty$, we have
$$lim_{xtoinfty}left(1+frac1{f(x)}right)^x=lim_{xtoinfty}left(left(1+frac1{f(x)}right)^{f(x)}right)^{x/f(x)}=left(lim_{xtoinfty}left(1+frac1{f(x)}right)^{f(x)}right)^{lim_{xtoinfty}x/f(x)}
\=e^{lim_{xtoinfty}x/f(x)}.$$
In the given case, we have $f(x)=-(x+8)/5.$
answered 7 hours ago
Yves DaoustYves Daoust
129k676227
129k676227
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
add a comment |
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
$begingroup$
What about "other powers" with the form "$infty^0$"?
$endgroup$
– aschepler
5 hours ago
add a comment |
jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
jfkdasjfk is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3136503%2fhow-to-evaluate-the-limit-where-something-is-raised-to-a-power-of-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Try taking the limit of the logarithm of the expression.
$endgroup$
– John Wayland Bales
13 hours ago