How to check the presence of a given numpy array in a larger-shape numpy array?
up vote
1
down vote
favorite
I guess the title of my question might not be very clear..
I have a small array, say a = ([[0,0,0],[0,0,1],[0,1,1]])
. Then I have a bigger array of a higher dimension, say b = ([[[2,2,2],[2,0,1],[2,1,1]],[[0,0,0],[3,3,1],[3,1,1]],[...]])
.
I'd like to check if one of the elements of a can be found in b
. In this case, I'd find that the first element of a [0,0,0]
is indeed in b
, and then I'd like to retrieve the corresponding index in b
.
I'd like to do that avoiding looping, since from the very little I understood from numpy arrays, they are not meant to be iterated over in a classic way. In other words, I need it to be very fast, because my actual arrays are quite big.
Any idea?
Thanks a lot!
Arnaud.
numpy
add a comment |
up vote
1
down vote
favorite
I guess the title of my question might not be very clear..
I have a small array, say a = ([[0,0,0],[0,0,1],[0,1,1]])
. Then I have a bigger array of a higher dimension, say b = ([[[2,2,2],[2,0,1],[2,1,1]],[[0,0,0],[3,3,1],[3,1,1]],[...]])
.
I'd like to check if one of the elements of a can be found in b
. In this case, I'd find that the first element of a [0,0,0]
is indeed in b
, and then I'd like to retrieve the corresponding index in b
.
I'd like to do that avoiding looping, since from the very little I understood from numpy arrays, they are not meant to be iterated over in a classic way. In other words, I need it to be very fast, because my actual arrays are quite big.
Any idea?
Thanks a lot!
Arnaud.
numpy
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I guess the title of my question might not be very clear..
I have a small array, say a = ([[0,0,0],[0,0,1],[0,1,1]])
. Then I have a bigger array of a higher dimension, say b = ([[[2,2,2],[2,0,1],[2,1,1]],[[0,0,0],[3,3,1],[3,1,1]],[...]])
.
I'd like to check if one of the elements of a can be found in b
. In this case, I'd find that the first element of a [0,0,0]
is indeed in b
, and then I'd like to retrieve the corresponding index in b
.
I'd like to do that avoiding looping, since from the very little I understood from numpy arrays, they are not meant to be iterated over in a classic way. In other words, I need it to be very fast, because my actual arrays are quite big.
Any idea?
Thanks a lot!
Arnaud.
numpy
I guess the title of my question might not be very clear..
I have a small array, say a = ([[0,0,0],[0,0,1],[0,1,1]])
. Then I have a bigger array of a higher dimension, say b = ([[[2,2,2],[2,0,1],[2,1,1]],[[0,0,0],[3,3,1],[3,1,1]],[...]])
.
I'd like to check if one of the elements of a can be found in b
. In this case, I'd find that the first element of a [0,0,0]
is indeed in b
, and then I'd like to retrieve the corresponding index in b
.
I'd like to do that avoiding looping, since from the very little I understood from numpy arrays, they are not meant to be iterated over in a classic way. In other words, I need it to be very fast, because my actual arrays are quite big.
Any idea?
Thanks a lot!
Arnaud.
numpy
numpy
edited Nov 19 at 8:09
Aqueous Carlos
301213
301213
asked Nov 19 at 7:51
Arnaud
12813
12813
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
I don't know of a direct way, but I here's a function that works around the problem:
import numpy as np
def find_indices(val, arr):
# first take a mean at the lowest level of each array,
# then compare these to eliminate the majority of entries
mb = np.mean(arr, axis=2); ma = np.mean(val)
Y = np.argwhere(mb==ma)
indices =
# Then run a quick loop on the remaining elements to
# eliminate arrays that don't match the order
for i in range(len(Y)):
idx = (Y[i,0],Y[i,1])
if np.array_equal(val, arr[idx]):
indices.append(idx)
return indices
# Sample arrays
a = np.array([[0,0,0],[0,0,1],[0,1,1]])
b = np.array([ [[6,5,4],[0,0,1],[2,3,3]],
[[2,5,4],[6,5,4],[0,0,0]],
[[2,0,2],[3,5,4],[5,4,6]],
[[6,5,4],[0,0,0],[2,5,3]] ])
print(find_indices(a[0], b))
# [(1, 2), (3, 1)]
print(find_indices(a[1], b))
# [(0, 1)]
The idea is to use the mean of each array and compare this with the mean of the input. np.argwhere()
is the key here. That way you remove most of the unwanted matches, but I did need to use a loop on the remainder to avoid the unsorted matches (this shouldn't be too memory-consuming). You'll probably want to customise it further, but I hope this helps.
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
I don't know of a direct way, but I here's a function that works around the problem:
import numpy as np
def find_indices(val, arr):
# first take a mean at the lowest level of each array,
# then compare these to eliminate the majority of entries
mb = np.mean(arr, axis=2); ma = np.mean(val)
Y = np.argwhere(mb==ma)
indices =
# Then run a quick loop on the remaining elements to
# eliminate arrays that don't match the order
for i in range(len(Y)):
idx = (Y[i,0],Y[i,1])
if np.array_equal(val, arr[idx]):
indices.append(idx)
return indices
# Sample arrays
a = np.array([[0,0,0],[0,0,1],[0,1,1]])
b = np.array([ [[6,5,4],[0,0,1],[2,3,3]],
[[2,5,4],[6,5,4],[0,0,0]],
[[2,0,2],[3,5,4],[5,4,6]],
[[6,5,4],[0,0,0],[2,5,3]] ])
print(find_indices(a[0], b))
# [(1, 2), (3, 1)]
print(find_indices(a[1], b))
# [(0, 1)]
The idea is to use the mean of each array and compare this with the mean of the input. np.argwhere()
is the key here. That way you remove most of the unwanted matches, but I did need to use a loop on the remainder to avoid the unsorted matches (this shouldn't be too memory-consuming). You'll probably want to customise it further, but I hope this helps.
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
add a comment |
up vote
1
down vote
I don't know of a direct way, but I here's a function that works around the problem:
import numpy as np
def find_indices(val, arr):
# first take a mean at the lowest level of each array,
# then compare these to eliminate the majority of entries
mb = np.mean(arr, axis=2); ma = np.mean(val)
Y = np.argwhere(mb==ma)
indices =
# Then run a quick loop on the remaining elements to
# eliminate arrays that don't match the order
for i in range(len(Y)):
idx = (Y[i,0],Y[i,1])
if np.array_equal(val, arr[idx]):
indices.append(idx)
return indices
# Sample arrays
a = np.array([[0,0,0],[0,0,1],[0,1,1]])
b = np.array([ [[6,5,4],[0,0,1],[2,3,3]],
[[2,5,4],[6,5,4],[0,0,0]],
[[2,0,2],[3,5,4],[5,4,6]],
[[6,5,4],[0,0,0],[2,5,3]] ])
print(find_indices(a[0], b))
# [(1, 2), (3, 1)]
print(find_indices(a[1], b))
# [(0, 1)]
The idea is to use the mean of each array and compare this with the mean of the input. np.argwhere()
is the key here. That way you remove most of the unwanted matches, but I did need to use a loop on the remainder to avoid the unsorted matches (this shouldn't be too memory-consuming). You'll probably want to customise it further, but I hope this helps.
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
add a comment |
up vote
1
down vote
up vote
1
down vote
I don't know of a direct way, but I here's a function that works around the problem:
import numpy as np
def find_indices(val, arr):
# first take a mean at the lowest level of each array,
# then compare these to eliminate the majority of entries
mb = np.mean(arr, axis=2); ma = np.mean(val)
Y = np.argwhere(mb==ma)
indices =
# Then run a quick loop on the remaining elements to
# eliminate arrays that don't match the order
for i in range(len(Y)):
idx = (Y[i,0],Y[i,1])
if np.array_equal(val, arr[idx]):
indices.append(idx)
return indices
# Sample arrays
a = np.array([[0,0,0],[0,0,1],[0,1,1]])
b = np.array([ [[6,5,4],[0,0,1],[2,3,3]],
[[2,5,4],[6,5,4],[0,0,0]],
[[2,0,2],[3,5,4],[5,4,6]],
[[6,5,4],[0,0,0],[2,5,3]] ])
print(find_indices(a[0], b))
# [(1, 2), (3, 1)]
print(find_indices(a[1], b))
# [(0, 1)]
The idea is to use the mean of each array and compare this with the mean of the input. np.argwhere()
is the key here. That way you remove most of the unwanted matches, but I did need to use a loop on the remainder to avoid the unsorted matches (this shouldn't be too memory-consuming). You'll probably want to customise it further, but I hope this helps.
I don't know of a direct way, but I here's a function that works around the problem:
import numpy as np
def find_indices(val, arr):
# first take a mean at the lowest level of each array,
# then compare these to eliminate the majority of entries
mb = np.mean(arr, axis=2); ma = np.mean(val)
Y = np.argwhere(mb==ma)
indices =
# Then run a quick loop on the remaining elements to
# eliminate arrays that don't match the order
for i in range(len(Y)):
idx = (Y[i,0],Y[i,1])
if np.array_equal(val, arr[idx]):
indices.append(idx)
return indices
# Sample arrays
a = np.array([[0,0,0],[0,0,1],[0,1,1]])
b = np.array([ [[6,5,4],[0,0,1],[2,3,3]],
[[2,5,4],[6,5,4],[0,0,0]],
[[2,0,2],[3,5,4],[5,4,6]],
[[6,5,4],[0,0,0],[2,5,3]] ])
print(find_indices(a[0], b))
# [(1, 2), (3, 1)]
print(find_indices(a[1], b))
# [(0, 1)]
The idea is to use the mean of each array and compare this with the mean of the input. np.argwhere()
is the key here. That way you remove most of the unwanted matches, but I did need to use a loop on the remainder to avoid the unsorted matches (this shouldn't be too memory-consuming). You'll probably want to customise it further, but I hope this helps.
answered Nov 19 at 18:37
John Kealy
362
362
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
add a comment |
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
Thanks for the suggestion! Indeed such kind of workaround is a help!
– Arnaud
Nov 20 at 15:20
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53370378%2fhow-to-check-the-presence-of-a-given-numpy-array-in-a-larger-shape-numpy-array%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown