A functional equation of two variables
Solve the following functional equation :
$f:Bbb Z rightarrow Bbb Z$, $f(f(x)+y)=x+f(y+2017)$
I have no prior experience with solving functional equation but still tried a bit. I set $x=y=0$ to get $f(f(0))=f(2017)$. Can we apply $f^{-1}$ both sides to get $f(0)=2017$? I am unable to carry this on.
functional-equations
add a comment |
Solve the following functional equation :
$f:Bbb Z rightarrow Bbb Z$, $f(f(x)+y)=x+f(y+2017)$
I have no prior experience with solving functional equation but still tried a bit. I set $x=y=0$ to get $f(f(0))=f(2017)$. Can we apply $f^{-1}$ both sides to get $f(0)=2017$? I am unable to carry this on.
functional-equations
1
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago
add a comment |
Solve the following functional equation :
$f:Bbb Z rightarrow Bbb Z$, $f(f(x)+y)=x+f(y+2017)$
I have no prior experience with solving functional equation but still tried a bit. I set $x=y=0$ to get $f(f(0))=f(2017)$. Can we apply $f^{-1}$ both sides to get $f(0)=2017$? I am unable to carry this on.
functional-equations
Solve the following functional equation :
$f:Bbb Z rightarrow Bbb Z$, $f(f(x)+y)=x+f(y+2017)$
I have no prior experience with solving functional equation but still tried a bit. I set $x=y=0$ to get $f(f(0))=f(2017)$. Can we apply $f^{-1}$ both sides to get $f(0)=2017$? I am unable to carry this on.
functional-equations
functional-equations
edited 2 days ago
Cheerful Parsnip
20.9k23396
20.9k23396
asked 2 days ago
Epsilon zero
32418
32418
1
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago
add a comment |
1
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago
1
1
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
Got it! I probably complicated it more than I had to so if anyone sees any way to simply this I would love to hear feedback.
To solve this, let $y=0$ so that
$f(f(x)) = x+f(2017)$.
Let $c=f(2017)$. Then for all $xinmathbb{Z}$,
$$f(f(x)) = x+c$$
Now plugging $x=y=0$ into the original equation we get
$f(f(0)) = f(2017)$. Taking $f$ of both sides yields
$f(f(f(0))) = f(f(2017))$ which is $f(0)+c=2017+c$ so
$f(0) = 2017$.
Now take $f$ of both sides of the original equation to get
$f(f(f(x)+y)) = f(x+f(y+2017))$
which is
$f(x)+y + c = f(x+f(y+2017))$
Setting $y=-2017$ gives
$$f(x)-2017 + c = f(x+f(0)) = f(x+2017)$$.
Now we return again to the original equation with $y=1$. This gives
$f(f(x)+1) = x+f(2018)$ which by the above formula is
$x+f(1)-2017 + c$. So
$$f(f(x)+1)-f(f(x)) = x+f(1)-2017+c - (x+c) = f(1)-2017$$
Now, as $f(f(x)) = x+c$, $f(f(x))$, and thus $f(x)$, can attain all values in $mathbb{Z}$. So for any $kinmathbb{Z}$, there is an $xinmathbb{Z}$ such that $f(x)=k$, and so the above formula becomes
$$f(k+1)-f(k) = f(1)-2017$$
for all $kinmathbb{Z}$. So for all $kinmathbb{Z}$,
$$f(k) = k+c_2$$
for some $c_2$. So the original equation becomes
$$x+y+2c_2=x+y+2017+c_2$$
so $c_2=2017$. Thus the only solution is
$$f(x) = x+2017$$
New contributor
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
add a comment |
You could take $y=0$ there and get $f(f(x))=x+f(2017)=x+n$ where $n$ is a constant. Thus $f(f(x))$ is a linear function. You can observe (guess?) what $f(x)$ could be like here. If it is so, then you have no problem taking $f^{-1}$ and you can easily find $n$.
The point is how to prove the nature of $f(x)$ if you know $f(f(x))$ is linear. This is an interesting problem. What is the square root (with integer values) of a linear function?
Now here I'm not sure $f(x)$ will end up being a simple function involving only arithmetic operations, or a function also involving the modulo.
New contributor
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
add a comment |
Let $n$ be an integer. Then at $f(x)=n$ and $y=0$, the equation $f(f(x)+y)=x+f(y+n)$ becomes $f(n+y)=f(y+n)+xBig|_{f(x)=n}$, so $f(0)=n$.
Now at $f(x)=n+1$, we can derive similar relations, at $y=0$ and $y=-1$ respectively, $$xBig|_{f(x)=n+1}=f(n+1)-f(n)=f(n)-f(n-1)implies 2f(n)=f(n-1)+f(n+1).$$
By induction it can be proven that $2f(n)=f(n-x)+f(n+x)$ or $2f(n)=f(x)+f(2n-x)$ for any integer $x$. Assuming differentiability, $f'(x)-f'(2n-x)=0$ so $f$ is either a linear or periodic function. It cannot be periodic because $f(0)=n$ and $xBig|_{f(x)=0}=f(n)-f(0)$.
Thus $f$ is a linear function and putting it in $f(x)=ax+b$, gives us $b=n$ and $a=1$ since $f(f(x))=x+f(n)$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059243%2fa-functional-equation-of-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Got it! I probably complicated it more than I had to so if anyone sees any way to simply this I would love to hear feedback.
To solve this, let $y=0$ so that
$f(f(x)) = x+f(2017)$.
Let $c=f(2017)$. Then for all $xinmathbb{Z}$,
$$f(f(x)) = x+c$$
Now plugging $x=y=0$ into the original equation we get
$f(f(0)) = f(2017)$. Taking $f$ of both sides yields
$f(f(f(0))) = f(f(2017))$ which is $f(0)+c=2017+c$ so
$f(0) = 2017$.
Now take $f$ of both sides of the original equation to get
$f(f(f(x)+y)) = f(x+f(y+2017))$
which is
$f(x)+y + c = f(x+f(y+2017))$
Setting $y=-2017$ gives
$$f(x)-2017 + c = f(x+f(0)) = f(x+2017)$$.
Now we return again to the original equation with $y=1$. This gives
$f(f(x)+1) = x+f(2018)$ which by the above formula is
$x+f(1)-2017 + c$. So
$$f(f(x)+1)-f(f(x)) = x+f(1)-2017+c - (x+c) = f(1)-2017$$
Now, as $f(f(x)) = x+c$, $f(f(x))$, and thus $f(x)$, can attain all values in $mathbb{Z}$. So for any $kinmathbb{Z}$, there is an $xinmathbb{Z}$ such that $f(x)=k$, and so the above formula becomes
$$f(k+1)-f(k) = f(1)-2017$$
for all $kinmathbb{Z}$. So for all $kinmathbb{Z}$,
$$f(k) = k+c_2$$
for some $c_2$. So the original equation becomes
$$x+y+2c_2=x+y+2017+c_2$$
so $c_2=2017$. Thus the only solution is
$$f(x) = x+2017$$
New contributor
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
add a comment |
Got it! I probably complicated it more than I had to so if anyone sees any way to simply this I would love to hear feedback.
To solve this, let $y=0$ so that
$f(f(x)) = x+f(2017)$.
Let $c=f(2017)$. Then for all $xinmathbb{Z}$,
$$f(f(x)) = x+c$$
Now plugging $x=y=0$ into the original equation we get
$f(f(0)) = f(2017)$. Taking $f$ of both sides yields
$f(f(f(0))) = f(f(2017))$ which is $f(0)+c=2017+c$ so
$f(0) = 2017$.
Now take $f$ of both sides of the original equation to get
$f(f(f(x)+y)) = f(x+f(y+2017))$
which is
$f(x)+y + c = f(x+f(y+2017))$
Setting $y=-2017$ gives
$$f(x)-2017 + c = f(x+f(0)) = f(x+2017)$$.
Now we return again to the original equation with $y=1$. This gives
$f(f(x)+1) = x+f(2018)$ which by the above formula is
$x+f(1)-2017 + c$. So
$$f(f(x)+1)-f(f(x)) = x+f(1)-2017+c - (x+c) = f(1)-2017$$
Now, as $f(f(x)) = x+c$, $f(f(x))$, and thus $f(x)$, can attain all values in $mathbb{Z}$. So for any $kinmathbb{Z}$, there is an $xinmathbb{Z}$ such that $f(x)=k$, and so the above formula becomes
$$f(k+1)-f(k) = f(1)-2017$$
for all $kinmathbb{Z}$. So for all $kinmathbb{Z}$,
$$f(k) = k+c_2$$
for some $c_2$. So the original equation becomes
$$x+y+2c_2=x+y+2017+c_2$$
so $c_2=2017$. Thus the only solution is
$$f(x) = x+2017$$
New contributor
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
add a comment |
Got it! I probably complicated it more than I had to so if anyone sees any way to simply this I would love to hear feedback.
To solve this, let $y=0$ so that
$f(f(x)) = x+f(2017)$.
Let $c=f(2017)$. Then for all $xinmathbb{Z}$,
$$f(f(x)) = x+c$$
Now plugging $x=y=0$ into the original equation we get
$f(f(0)) = f(2017)$. Taking $f$ of both sides yields
$f(f(f(0))) = f(f(2017))$ which is $f(0)+c=2017+c$ so
$f(0) = 2017$.
Now take $f$ of both sides of the original equation to get
$f(f(f(x)+y)) = f(x+f(y+2017))$
which is
$f(x)+y + c = f(x+f(y+2017))$
Setting $y=-2017$ gives
$$f(x)-2017 + c = f(x+f(0)) = f(x+2017)$$.
Now we return again to the original equation with $y=1$. This gives
$f(f(x)+1) = x+f(2018)$ which by the above formula is
$x+f(1)-2017 + c$. So
$$f(f(x)+1)-f(f(x)) = x+f(1)-2017+c - (x+c) = f(1)-2017$$
Now, as $f(f(x)) = x+c$, $f(f(x))$, and thus $f(x)$, can attain all values in $mathbb{Z}$. So for any $kinmathbb{Z}$, there is an $xinmathbb{Z}$ such that $f(x)=k$, and so the above formula becomes
$$f(k+1)-f(k) = f(1)-2017$$
for all $kinmathbb{Z}$. So for all $kinmathbb{Z}$,
$$f(k) = k+c_2$$
for some $c_2$. So the original equation becomes
$$x+y+2c_2=x+y+2017+c_2$$
so $c_2=2017$. Thus the only solution is
$$f(x) = x+2017$$
New contributor
Got it! I probably complicated it more than I had to so if anyone sees any way to simply this I would love to hear feedback.
To solve this, let $y=0$ so that
$f(f(x)) = x+f(2017)$.
Let $c=f(2017)$. Then for all $xinmathbb{Z}$,
$$f(f(x)) = x+c$$
Now plugging $x=y=0$ into the original equation we get
$f(f(0)) = f(2017)$. Taking $f$ of both sides yields
$f(f(f(0))) = f(f(2017))$ which is $f(0)+c=2017+c$ so
$f(0) = 2017$.
Now take $f$ of both sides of the original equation to get
$f(f(f(x)+y)) = f(x+f(y+2017))$
which is
$f(x)+y + c = f(x+f(y+2017))$
Setting $y=-2017$ gives
$$f(x)-2017 + c = f(x+f(0)) = f(x+2017)$$.
Now we return again to the original equation with $y=1$. This gives
$f(f(x)+1) = x+f(2018)$ which by the above formula is
$x+f(1)-2017 + c$. So
$$f(f(x)+1)-f(f(x)) = x+f(1)-2017+c - (x+c) = f(1)-2017$$
Now, as $f(f(x)) = x+c$, $f(f(x))$, and thus $f(x)$, can attain all values in $mathbb{Z}$. So for any $kinmathbb{Z}$, there is an $xinmathbb{Z}$ such that $f(x)=k$, and so the above formula becomes
$$f(k+1)-f(k) = f(1)-2017$$
for all $kinmathbb{Z}$. So for all $kinmathbb{Z}$,
$$f(k) = k+c_2$$
for some $c_2$. So the original equation becomes
$$x+y+2c_2=x+y+2017+c_2$$
so $c_2=2017$. Thus the only solution is
$$f(x) = x+2017$$
New contributor
New contributor
answered 2 days ago
Erik Parkinson
8218
8218
New contributor
New contributor
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
add a comment |
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
(+1) nice! ${}{}$
– TheSimpliFire
2 days ago
add a comment |
You could take $y=0$ there and get $f(f(x))=x+f(2017)=x+n$ where $n$ is a constant. Thus $f(f(x))$ is a linear function. You can observe (guess?) what $f(x)$ could be like here. If it is so, then you have no problem taking $f^{-1}$ and you can easily find $n$.
The point is how to prove the nature of $f(x)$ if you know $f(f(x))$ is linear. This is an interesting problem. What is the square root (with integer values) of a linear function?
Now here I'm not sure $f(x)$ will end up being a simple function involving only arithmetic operations, or a function also involving the modulo.
New contributor
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
add a comment |
You could take $y=0$ there and get $f(f(x))=x+f(2017)=x+n$ where $n$ is a constant. Thus $f(f(x))$ is a linear function. You can observe (guess?) what $f(x)$ could be like here. If it is so, then you have no problem taking $f^{-1}$ and you can easily find $n$.
The point is how to prove the nature of $f(x)$ if you know $f(f(x))$ is linear. This is an interesting problem. What is the square root (with integer values) of a linear function?
Now here I'm not sure $f(x)$ will end up being a simple function involving only arithmetic operations, or a function also involving the modulo.
New contributor
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
add a comment |
You could take $y=0$ there and get $f(f(x))=x+f(2017)=x+n$ where $n$ is a constant. Thus $f(f(x))$ is a linear function. You can observe (guess?) what $f(x)$ could be like here. If it is so, then you have no problem taking $f^{-1}$ and you can easily find $n$.
The point is how to prove the nature of $f(x)$ if you know $f(f(x))$ is linear. This is an interesting problem. What is the square root (with integer values) of a linear function?
Now here I'm not sure $f(x)$ will end up being a simple function involving only arithmetic operations, or a function also involving the modulo.
New contributor
You could take $y=0$ there and get $f(f(x))=x+f(2017)=x+n$ where $n$ is a constant. Thus $f(f(x))$ is a linear function. You can observe (guess?) what $f(x)$ could be like here. If it is so, then you have no problem taking $f^{-1}$ and you can easily find $n$.
The point is how to prove the nature of $f(x)$ if you know $f(f(x))$ is linear. This is an interesting problem. What is the square root (with integer values) of a linear function?
Now here I'm not sure $f(x)$ will end up being a simple function involving only arithmetic operations, or a function also involving the modulo.
New contributor
edited 2 days ago
New contributor
answered 2 days ago
Ferred
763
763
New contributor
New contributor
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
add a comment |
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
1
1
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
This is better posted as a comment. As you don't yet have enough reputation for that, how about answering some other questions and come back? :)
– TheSimpliFire
2 days ago
add a comment |
Let $n$ be an integer. Then at $f(x)=n$ and $y=0$, the equation $f(f(x)+y)=x+f(y+n)$ becomes $f(n+y)=f(y+n)+xBig|_{f(x)=n}$, so $f(0)=n$.
Now at $f(x)=n+1$, we can derive similar relations, at $y=0$ and $y=-1$ respectively, $$xBig|_{f(x)=n+1}=f(n+1)-f(n)=f(n)-f(n-1)implies 2f(n)=f(n-1)+f(n+1).$$
By induction it can be proven that $2f(n)=f(n-x)+f(n+x)$ or $2f(n)=f(x)+f(2n-x)$ for any integer $x$. Assuming differentiability, $f'(x)-f'(2n-x)=0$ so $f$ is either a linear or periodic function. It cannot be periodic because $f(0)=n$ and $xBig|_{f(x)=0}=f(n)-f(0)$.
Thus $f$ is a linear function and putting it in $f(x)=ax+b$, gives us $b=n$ and $a=1$ since $f(f(x))=x+f(n)$.
add a comment |
Let $n$ be an integer. Then at $f(x)=n$ and $y=0$, the equation $f(f(x)+y)=x+f(y+n)$ becomes $f(n+y)=f(y+n)+xBig|_{f(x)=n}$, so $f(0)=n$.
Now at $f(x)=n+1$, we can derive similar relations, at $y=0$ and $y=-1$ respectively, $$xBig|_{f(x)=n+1}=f(n+1)-f(n)=f(n)-f(n-1)implies 2f(n)=f(n-1)+f(n+1).$$
By induction it can be proven that $2f(n)=f(n-x)+f(n+x)$ or $2f(n)=f(x)+f(2n-x)$ for any integer $x$. Assuming differentiability, $f'(x)-f'(2n-x)=0$ so $f$ is either a linear or periodic function. It cannot be periodic because $f(0)=n$ and $xBig|_{f(x)=0}=f(n)-f(0)$.
Thus $f$ is a linear function and putting it in $f(x)=ax+b$, gives us $b=n$ and $a=1$ since $f(f(x))=x+f(n)$.
add a comment |
Let $n$ be an integer. Then at $f(x)=n$ and $y=0$, the equation $f(f(x)+y)=x+f(y+n)$ becomes $f(n+y)=f(y+n)+xBig|_{f(x)=n}$, so $f(0)=n$.
Now at $f(x)=n+1$, we can derive similar relations, at $y=0$ and $y=-1$ respectively, $$xBig|_{f(x)=n+1}=f(n+1)-f(n)=f(n)-f(n-1)implies 2f(n)=f(n-1)+f(n+1).$$
By induction it can be proven that $2f(n)=f(n-x)+f(n+x)$ or $2f(n)=f(x)+f(2n-x)$ for any integer $x$. Assuming differentiability, $f'(x)-f'(2n-x)=0$ so $f$ is either a linear or periodic function. It cannot be periodic because $f(0)=n$ and $xBig|_{f(x)=0}=f(n)-f(0)$.
Thus $f$ is a linear function and putting it in $f(x)=ax+b$, gives us $b=n$ and $a=1$ since $f(f(x))=x+f(n)$.
Let $n$ be an integer. Then at $f(x)=n$ and $y=0$, the equation $f(f(x)+y)=x+f(y+n)$ becomes $f(n+y)=f(y+n)+xBig|_{f(x)=n}$, so $f(0)=n$.
Now at $f(x)=n+1$, we can derive similar relations, at $y=0$ and $y=-1$ respectively, $$xBig|_{f(x)=n+1}=f(n+1)-f(n)=f(n)-f(n-1)implies 2f(n)=f(n-1)+f(n+1).$$
By induction it can be proven that $2f(n)=f(n-x)+f(n+x)$ or $2f(n)=f(x)+f(2n-x)$ for any integer $x$. Assuming differentiability, $f'(x)-f'(2n-x)=0$ so $f$ is either a linear or periodic function. It cannot be periodic because $f(0)=n$ and $xBig|_{f(x)=0}=f(n)-f(0)$.
Thus $f$ is a linear function and putting it in $f(x)=ax+b$, gives us $b=n$ and $a=1$ since $f(f(x))=x+f(n)$.
edited yesterday
answered 2 days ago
TheSimpliFire
12.4k62259
12.4k62259
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059243%2fa-functional-equation-of-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
It's allowed to take $f^{-1}$ on both sides if a function is monotonic. Can you assume that $f$ is monotonic in this case?
– Matti P.
2 days ago
Of $f$ is not injective you can't cancel it out
– Holo
2 days ago
@MattiP. Not monotonic, to be able to use $f^{-1}$ you need $f$ to be bijective, and to cancel out $f$ you need it to be injective
– Holo
2 days ago
It holds, because we have that at $y=-2017$, $f(0)=f(f(x)-2017)-x$ and at $f(x)=2017$, $f(0)=f(0)-x|_{f(x)=2017}$ so that $f(0)=2017$.
– TheSimpliFire
2 days ago
$f(x)=x+2017$ is clearly a solution, and probably the only solution, showing nothing else works is proving to be tricky though.
– Erik Parkinson
2 days ago