Remove any empty fields in a loop?












3














A list has many paths of certain csv's.
How to check if each csv in every loop has any empty columns and delete them if they are.



Code:



for i in list1:
if (list1.columns = '').any():
i.remove that column


Hope this explains what I am talking about.










share|improve this question



























    3














    A list has many paths of certain csv's.
    How to check if each csv in every loop has any empty columns and delete them if they are.



    Code:



    for i in list1:
    if (list1.columns = '').any():
    i.remove that column


    Hope this explains what I am talking about.










    share|improve this question

























      3












      3








      3







      A list has many paths of certain csv's.
      How to check if each csv in every loop has any empty columns and delete them if they are.



      Code:



      for i in list1:
      if (list1.columns = '').any():
      i.remove that column


      Hope this explains what I am talking about.










      share|improve this question













      A list has many paths of certain csv's.
      How to check if each csv in every loop has any empty columns and delete them if they are.



      Code:



      for i in list1:
      if (list1.columns = '').any():
      i.remove that column


      Hope this explains what I am talking about.







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 20 '18 at 11:30









      user10671234

      376




      376
























          1 Answer
          1






          active

          oldest

          votes


















          3














          Sample:



          df = pd.DataFrame({
          '':list('abcdef'),
          'B':[4,5,4,5,5,np.nan],
          'C':[''] * 6,
          'D':[np.nan] * 6,
          'E':[5,3,6,9,2,4],
          'F':list('aaabb') + ['']
          })

          print (df)
          B C D E F
          0 a 4.0 NaN 5 a
          1 b 5.0 NaN 3 a
          2 c 4.0 NaN 6 a
          3 d 5.0 NaN 9 b
          4 e 5.0 NaN 2 b
          5 f NaN NaN 4


          Removed first column, because empty column name - it means filtering only columns with no empty values with loc and boolean indexing:



          df1 = df.loc[:, df.columns != '']
          print (df1)
          B C D E F
          0 4.0 NaN 5 a
          1 5.0 NaN 3 a
          2 4.0 NaN 6 a
          3 5.0 NaN 9 b
          4 5.0 NaN 2 b
          5 NaN NaN 4


          Reoved column C, because filled only empty values - compare all values if not empty values and get at least one True per column by DataFrame.any, also filter by boolean indexing with loc:



          df2 = df.loc[:, (df != '').any()]
          print (df2)
          B D E
          0 a 4.0 NaN 5
          1 b 5.0 NaN 3
          2 c 4.0 NaN 6
          3 d 5.0 NaN 9
          4 e 5.0 NaN 2
          5 f NaN NaN 4

          print ((df != ''))
          B C D E F
          0 True True False True True True
          1 True True False True True True
          2 True True False True True True
          3 True True False True True True
          4 True True False True True True
          5 True True False True True False

          print ((df != '').any())
          True
          B True
          C False
          D True
          E True
          F True
          dtype: bool


          Removed column D because filled only missing values with function dropna:



          df3 = df.dropna(axis=1, how='all')
          print (df3)
          B C E F
          0 a 4.0 5 a
          1 b 5.0 3 a
          2 c 4.0 6 a
          3 d 5.0 9 b
          4 e 5.0 2 b
          5 f NaN 4





          share|improve this answer























          • The first filters out columns that may not be empty but have empty field name?
            – user10671234
            Nov 20 '18 at 11:35










          • @user10671234 - added sample.
            – jezrael
            Nov 20 '18 at 11:38






          • 1




            upvoted and accepted thanks
            – user10671234
            Nov 20 '18 at 11:44






          • 1




            @user10671234 - thank you.
            – jezrael
            Nov 20 '18 at 11:45






          • 1




            ok understood now.
            – user10671234
            Nov 20 '18 at 12:49











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392065%2fremove-any-empty-fields-in-a-loop%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Sample:



          df = pd.DataFrame({
          '':list('abcdef'),
          'B':[4,5,4,5,5,np.nan],
          'C':[''] * 6,
          'D':[np.nan] * 6,
          'E':[5,3,6,9,2,4],
          'F':list('aaabb') + ['']
          })

          print (df)
          B C D E F
          0 a 4.0 NaN 5 a
          1 b 5.0 NaN 3 a
          2 c 4.0 NaN 6 a
          3 d 5.0 NaN 9 b
          4 e 5.0 NaN 2 b
          5 f NaN NaN 4


          Removed first column, because empty column name - it means filtering only columns with no empty values with loc and boolean indexing:



          df1 = df.loc[:, df.columns != '']
          print (df1)
          B C D E F
          0 4.0 NaN 5 a
          1 5.0 NaN 3 a
          2 4.0 NaN 6 a
          3 5.0 NaN 9 b
          4 5.0 NaN 2 b
          5 NaN NaN 4


          Reoved column C, because filled only empty values - compare all values if not empty values and get at least one True per column by DataFrame.any, also filter by boolean indexing with loc:



          df2 = df.loc[:, (df != '').any()]
          print (df2)
          B D E
          0 a 4.0 NaN 5
          1 b 5.0 NaN 3
          2 c 4.0 NaN 6
          3 d 5.0 NaN 9
          4 e 5.0 NaN 2
          5 f NaN NaN 4

          print ((df != ''))
          B C D E F
          0 True True False True True True
          1 True True False True True True
          2 True True False True True True
          3 True True False True True True
          4 True True False True True True
          5 True True False True True False

          print ((df != '').any())
          True
          B True
          C False
          D True
          E True
          F True
          dtype: bool


          Removed column D because filled only missing values with function dropna:



          df3 = df.dropna(axis=1, how='all')
          print (df3)
          B C E F
          0 a 4.0 5 a
          1 b 5.0 3 a
          2 c 4.0 6 a
          3 d 5.0 9 b
          4 e 5.0 2 b
          5 f NaN 4





          share|improve this answer























          • The first filters out columns that may not be empty but have empty field name?
            – user10671234
            Nov 20 '18 at 11:35










          • @user10671234 - added sample.
            – jezrael
            Nov 20 '18 at 11:38






          • 1




            upvoted and accepted thanks
            – user10671234
            Nov 20 '18 at 11:44






          • 1




            @user10671234 - thank you.
            – jezrael
            Nov 20 '18 at 11:45






          • 1




            ok understood now.
            – user10671234
            Nov 20 '18 at 12:49
















          3














          Sample:



          df = pd.DataFrame({
          '':list('abcdef'),
          'B':[4,5,4,5,5,np.nan],
          'C':[''] * 6,
          'D':[np.nan] * 6,
          'E':[5,3,6,9,2,4],
          'F':list('aaabb') + ['']
          })

          print (df)
          B C D E F
          0 a 4.0 NaN 5 a
          1 b 5.0 NaN 3 a
          2 c 4.0 NaN 6 a
          3 d 5.0 NaN 9 b
          4 e 5.0 NaN 2 b
          5 f NaN NaN 4


          Removed first column, because empty column name - it means filtering only columns with no empty values with loc and boolean indexing:



          df1 = df.loc[:, df.columns != '']
          print (df1)
          B C D E F
          0 4.0 NaN 5 a
          1 5.0 NaN 3 a
          2 4.0 NaN 6 a
          3 5.0 NaN 9 b
          4 5.0 NaN 2 b
          5 NaN NaN 4


          Reoved column C, because filled only empty values - compare all values if not empty values and get at least one True per column by DataFrame.any, also filter by boolean indexing with loc:



          df2 = df.loc[:, (df != '').any()]
          print (df2)
          B D E
          0 a 4.0 NaN 5
          1 b 5.0 NaN 3
          2 c 4.0 NaN 6
          3 d 5.0 NaN 9
          4 e 5.0 NaN 2
          5 f NaN NaN 4

          print ((df != ''))
          B C D E F
          0 True True False True True True
          1 True True False True True True
          2 True True False True True True
          3 True True False True True True
          4 True True False True True True
          5 True True False True True False

          print ((df != '').any())
          True
          B True
          C False
          D True
          E True
          F True
          dtype: bool


          Removed column D because filled only missing values with function dropna:



          df3 = df.dropna(axis=1, how='all')
          print (df3)
          B C E F
          0 a 4.0 5 a
          1 b 5.0 3 a
          2 c 4.0 6 a
          3 d 5.0 9 b
          4 e 5.0 2 b
          5 f NaN 4





          share|improve this answer























          • The first filters out columns that may not be empty but have empty field name?
            – user10671234
            Nov 20 '18 at 11:35










          • @user10671234 - added sample.
            – jezrael
            Nov 20 '18 at 11:38






          • 1




            upvoted and accepted thanks
            – user10671234
            Nov 20 '18 at 11:44






          • 1




            @user10671234 - thank you.
            – jezrael
            Nov 20 '18 at 11:45






          • 1




            ok understood now.
            – user10671234
            Nov 20 '18 at 12:49














          3












          3








          3






          Sample:



          df = pd.DataFrame({
          '':list('abcdef'),
          'B':[4,5,4,5,5,np.nan],
          'C':[''] * 6,
          'D':[np.nan] * 6,
          'E':[5,3,6,9,2,4],
          'F':list('aaabb') + ['']
          })

          print (df)
          B C D E F
          0 a 4.0 NaN 5 a
          1 b 5.0 NaN 3 a
          2 c 4.0 NaN 6 a
          3 d 5.0 NaN 9 b
          4 e 5.0 NaN 2 b
          5 f NaN NaN 4


          Removed first column, because empty column name - it means filtering only columns with no empty values with loc and boolean indexing:



          df1 = df.loc[:, df.columns != '']
          print (df1)
          B C D E F
          0 4.0 NaN 5 a
          1 5.0 NaN 3 a
          2 4.0 NaN 6 a
          3 5.0 NaN 9 b
          4 5.0 NaN 2 b
          5 NaN NaN 4


          Reoved column C, because filled only empty values - compare all values if not empty values and get at least one True per column by DataFrame.any, also filter by boolean indexing with loc:



          df2 = df.loc[:, (df != '').any()]
          print (df2)
          B D E
          0 a 4.0 NaN 5
          1 b 5.0 NaN 3
          2 c 4.0 NaN 6
          3 d 5.0 NaN 9
          4 e 5.0 NaN 2
          5 f NaN NaN 4

          print ((df != ''))
          B C D E F
          0 True True False True True True
          1 True True False True True True
          2 True True False True True True
          3 True True False True True True
          4 True True False True True True
          5 True True False True True False

          print ((df != '').any())
          True
          B True
          C False
          D True
          E True
          F True
          dtype: bool


          Removed column D because filled only missing values with function dropna:



          df3 = df.dropna(axis=1, how='all')
          print (df3)
          B C E F
          0 a 4.0 5 a
          1 b 5.0 3 a
          2 c 4.0 6 a
          3 d 5.0 9 b
          4 e 5.0 2 b
          5 f NaN 4





          share|improve this answer














          Sample:



          df = pd.DataFrame({
          '':list('abcdef'),
          'B':[4,5,4,5,5,np.nan],
          'C':[''] * 6,
          'D':[np.nan] * 6,
          'E':[5,3,6,9,2,4],
          'F':list('aaabb') + ['']
          })

          print (df)
          B C D E F
          0 a 4.0 NaN 5 a
          1 b 5.0 NaN 3 a
          2 c 4.0 NaN 6 a
          3 d 5.0 NaN 9 b
          4 e 5.0 NaN 2 b
          5 f NaN NaN 4


          Removed first column, because empty column name - it means filtering only columns with no empty values with loc and boolean indexing:



          df1 = df.loc[:, df.columns != '']
          print (df1)
          B C D E F
          0 4.0 NaN 5 a
          1 5.0 NaN 3 a
          2 4.0 NaN 6 a
          3 5.0 NaN 9 b
          4 5.0 NaN 2 b
          5 NaN NaN 4


          Reoved column C, because filled only empty values - compare all values if not empty values and get at least one True per column by DataFrame.any, also filter by boolean indexing with loc:



          df2 = df.loc[:, (df != '').any()]
          print (df2)
          B D E
          0 a 4.0 NaN 5
          1 b 5.0 NaN 3
          2 c 4.0 NaN 6
          3 d 5.0 NaN 9
          4 e 5.0 NaN 2
          5 f NaN NaN 4

          print ((df != ''))
          B C D E F
          0 True True False True True True
          1 True True False True True True
          2 True True False True True True
          3 True True False True True True
          4 True True False True True True
          5 True True False True True False

          print ((df != '').any())
          True
          B True
          C False
          D True
          E True
          F True
          dtype: bool


          Removed column D because filled only missing values with function dropna:



          df3 = df.dropna(axis=1, how='all')
          print (df3)
          B C E F
          0 a 4.0 5 a
          1 b 5.0 3 a
          2 c 4.0 6 a
          3 d 5.0 9 b
          4 e 5.0 2 b
          5 f NaN 4






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 20 '18 at 11:47

























          answered Nov 20 '18 at 11:32









          jezrael

          321k22263341




          321k22263341












          • The first filters out columns that may not be empty but have empty field name?
            – user10671234
            Nov 20 '18 at 11:35










          • @user10671234 - added sample.
            – jezrael
            Nov 20 '18 at 11:38






          • 1




            upvoted and accepted thanks
            – user10671234
            Nov 20 '18 at 11:44






          • 1




            @user10671234 - thank you.
            – jezrael
            Nov 20 '18 at 11:45






          • 1




            ok understood now.
            – user10671234
            Nov 20 '18 at 12:49


















          • The first filters out columns that may not be empty but have empty field name?
            – user10671234
            Nov 20 '18 at 11:35










          • @user10671234 - added sample.
            – jezrael
            Nov 20 '18 at 11:38






          • 1




            upvoted and accepted thanks
            – user10671234
            Nov 20 '18 at 11:44






          • 1




            @user10671234 - thank you.
            – jezrael
            Nov 20 '18 at 11:45






          • 1




            ok understood now.
            – user10671234
            Nov 20 '18 at 12:49
















          The first filters out columns that may not be empty but have empty field name?
          – user10671234
          Nov 20 '18 at 11:35




          The first filters out columns that may not be empty but have empty field name?
          – user10671234
          Nov 20 '18 at 11:35












          @user10671234 - added sample.
          – jezrael
          Nov 20 '18 at 11:38




          @user10671234 - added sample.
          – jezrael
          Nov 20 '18 at 11:38




          1




          1




          upvoted and accepted thanks
          – user10671234
          Nov 20 '18 at 11:44




          upvoted and accepted thanks
          – user10671234
          Nov 20 '18 at 11:44




          1




          1




          @user10671234 - thank you.
          – jezrael
          Nov 20 '18 at 11:45




          @user10671234 - thank you.
          – jezrael
          Nov 20 '18 at 11:45




          1




          1




          ok understood now.
          – user10671234
          Nov 20 '18 at 12:49




          ok understood now.
          – user10671234
          Nov 20 '18 at 12:49


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392065%2fremove-any-empty-fields-in-a-loop%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          Origin of the phrase “under your belt”?