Extracting Cluster Coordinates out of Flood Fill Function












0















I am trying to find a flood filling function that can give me as output a list with the coordinates (min and max of the x,y axis) of the clusters ('connected'pixels).
I have been given the following implementation but it seems to be the most time consuming part of my algorithm, and I wanna speed it up, as in the end it has to run over some hundreds of images.



    def floodfill8(self,coord,i,j,imin,imax,jmin,jmax,area=0):
r"""determining cluster size and coordinates by recursive flood filling
"""

if coord[i,j]==1:
area+=1
imax=np.max([imax,i])
imin=np.min([imin,i-1])
jmax=np.max([jmax,j])
jmin=np.min([jmin,j-1])
coord[i,j]=0
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j+1,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j-1,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j+1,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j-1,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j+1,imin,imax,jmin,jmax,area)
area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j-1,imin,imax,jmin,jmax,area)
return area, coord, imin, imax, jmin, jmax

def findcluster(self,coord):
r"""Cluster finding algorithm, finds connected groups of 1's in coord
---------
Input:
coord array of 0's and 1's
---------
Output:
clusters list of clusters with elements [xmin,xmax,ymin,ymax,size]"""
#add fixed boundaries
newcoord=np.zeros((coord.shape[0]+2,coord.shape[1]+2))
newcoord[1:-1,1:-1]=coord
clusters=
for i in np.arange(coord.shape[0]):
for j in np.arange(coord.shape[1]):
if newcoord[i+1,j+1]==1:
size,newcoord,imin,imax,jmin,jmax=self.floodfill8(newcoord,i+1,j+1,imin=i,imax=i,jmin=j,jmax=j)

clusters.append([imin,imax,jmin,jmax,size])
clusters=np.array(clusters)
if len(clusters)>1:
ind=np.argsort(clusters[:,-1])
clusters=clusters[ind]
return clusters


Note that this recursive flood filling is called in a loop over all the pixels in the image.
I really couldn't find anything already implemented, a library or something, and I am still quite a noob in this ,image processing, field, but I believe that it should be something optimized in some library.
I was wondering whether anyone has any information of a flood filling function or the relevant library, that can also give me this output.
The reason I want this output is twofold:
1.So that I can find the position of the clusters and remove them (the rectangle surrounding them) from the picture so that I do background correction.
2.So that draw a (red)-rectangular around those clusters that have the wished contrast and the wished size.
Hope my question is clear! If not I will be happy to get some feedback and explain the unclear parts.
Also if you have any advice in order to speed it up it is most welcome!
Thank you!










share|improve this question



























    0















    I am trying to find a flood filling function that can give me as output a list with the coordinates (min and max of the x,y axis) of the clusters ('connected'pixels).
    I have been given the following implementation but it seems to be the most time consuming part of my algorithm, and I wanna speed it up, as in the end it has to run over some hundreds of images.



        def floodfill8(self,coord,i,j,imin,imax,jmin,jmax,area=0):
    r"""determining cluster size and coordinates by recursive flood filling
    """

    if coord[i,j]==1:
    area+=1
    imax=np.max([imax,i])
    imin=np.min([imin,i-1])
    jmax=np.max([jmax,j])
    jmin=np.min([jmin,j-1])
    coord[i,j]=0
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j+1,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j-1,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j+1,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j-1,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j+1,imin,imax,jmin,jmax,area)
    area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j-1,imin,imax,jmin,jmax,area)
    return area, coord, imin, imax, jmin, jmax

    def findcluster(self,coord):
    r"""Cluster finding algorithm, finds connected groups of 1's in coord
    ---------
    Input:
    coord array of 0's and 1's
    ---------
    Output:
    clusters list of clusters with elements [xmin,xmax,ymin,ymax,size]"""
    #add fixed boundaries
    newcoord=np.zeros((coord.shape[0]+2,coord.shape[1]+2))
    newcoord[1:-1,1:-1]=coord
    clusters=
    for i in np.arange(coord.shape[0]):
    for j in np.arange(coord.shape[1]):
    if newcoord[i+1,j+1]==1:
    size,newcoord,imin,imax,jmin,jmax=self.floodfill8(newcoord,i+1,j+1,imin=i,imax=i,jmin=j,jmax=j)

    clusters.append([imin,imax,jmin,jmax,size])
    clusters=np.array(clusters)
    if len(clusters)>1:
    ind=np.argsort(clusters[:,-1])
    clusters=clusters[ind]
    return clusters


    Note that this recursive flood filling is called in a loop over all the pixels in the image.
    I really couldn't find anything already implemented, a library or something, and I am still quite a noob in this ,image processing, field, but I believe that it should be something optimized in some library.
    I was wondering whether anyone has any information of a flood filling function or the relevant library, that can also give me this output.
    The reason I want this output is twofold:
    1.So that I can find the position of the clusters and remove them (the rectangle surrounding them) from the picture so that I do background correction.
    2.So that draw a (red)-rectangular around those clusters that have the wished contrast and the wished size.
    Hope my question is clear! If not I will be happy to get some feedback and explain the unclear parts.
    Also if you have any advice in order to speed it up it is most welcome!
    Thank you!










    share|improve this question

























      0












      0








      0








      I am trying to find a flood filling function that can give me as output a list with the coordinates (min and max of the x,y axis) of the clusters ('connected'pixels).
      I have been given the following implementation but it seems to be the most time consuming part of my algorithm, and I wanna speed it up, as in the end it has to run over some hundreds of images.



          def floodfill8(self,coord,i,j,imin,imax,jmin,jmax,area=0):
      r"""determining cluster size and coordinates by recursive flood filling
      """

      if coord[i,j]==1:
      area+=1
      imax=np.max([imax,i])
      imin=np.min([imin,i-1])
      jmax=np.max([jmax,j])
      jmin=np.min([jmin,j-1])
      coord[i,j]=0
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j-1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j-1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j-1,imin,imax,jmin,jmax,area)
      return area, coord, imin, imax, jmin, jmax

      def findcluster(self,coord):
      r"""Cluster finding algorithm, finds connected groups of 1's in coord
      ---------
      Input:
      coord array of 0's and 1's
      ---------
      Output:
      clusters list of clusters with elements [xmin,xmax,ymin,ymax,size]"""
      #add fixed boundaries
      newcoord=np.zeros((coord.shape[0]+2,coord.shape[1]+2))
      newcoord[1:-1,1:-1]=coord
      clusters=
      for i in np.arange(coord.shape[0]):
      for j in np.arange(coord.shape[1]):
      if newcoord[i+1,j+1]==1:
      size,newcoord,imin,imax,jmin,jmax=self.floodfill8(newcoord,i+1,j+1,imin=i,imax=i,jmin=j,jmax=j)

      clusters.append([imin,imax,jmin,jmax,size])
      clusters=np.array(clusters)
      if len(clusters)>1:
      ind=np.argsort(clusters[:,-1])
      clusters=clusters[ind]
      return clusters


      Note that this recursive flood filling is called in a loop over all the pixels in the image.
      I really couldn't find anything already implemented, a library or something, and I am still quite a noob in this ,image processing, field, but I believe that it should be something optimized in some library.
      I was wondering whether anyone has any information of a flood filling function or the relevant library, that can also give me this output.
      The reason I want this output is twofold:
      1.So that I can find the position of the clusters and remove them (the rectangle surrounding them) from the picture so that I do background correction.
      2.So that draw a (red)-rectangular around those clusters that have the wished contrast and the wished size.
      Hope my question is clear! If not I will be happy to get some feedback and explain the unclear parts.
      Also if you have any advice in order to speed it up it is most welcome!
      Thank you!










      share|improve this question














      I am trying to find a flood filling function that can give me as output a list with the coordinates (min and max of the x,y axis) of the clusters ('connected'pixels).
      I have been given the following implementation but it seems to be the most time consuming part of my algorithm, and I wanna speed it up, as in the end it has to run over some hundreds of images.



          def floodfill8(self,coord,i,j,imin,imax,jmin,jmax,area=0):
      r"""determining cluster size and coordinates by recursive flood filling
      """

      if coord[i,j]==1:
      area+=1
      imax=np.max([imax,i])
      imin=np.min([imin,i-1])
      jmax=np.max([jmax,j])
      jmin=np.min([jmin,j-1])
      coord[i,j]=0
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i,j-1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i+1,j-1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j+1,imin,imax,jmin,jmax,area)
      area,coord,imin,imax,jmin,jmax=self.floodfill8(coord,i-1,j-1,imin,imax,jmin,jmax,area)
      return area, coord, imin, imax, jmin, jmax

      def findcluster(self,coord):
      r"""Cluster finding algorithm, finds connected groups of 1's in coord
      ---------
      Input:
      coord array of 0's and 1's
      ---------
      Output:
      clusters list of clusters with elements [xmin,xmax,ymin,ymax,size]"""
      #add fixed boundaries
      newcoord=np.zeros((coord.shape[0]+2,coord.shape[1]+2))
      newcoord[1:-1,1:-1]=coord
      clusters=
      for i in np.arange(coord.shape[0]):
      for j in np.arange(coord.shape[1]):
      if newcoord[i+1,j+1]==1:
      size,newcoord,imin,imax,jmin,jmax=self.floodfill8(newcoord,i+1,j+1,imin=i,imax=i,jmin=j,jmax=j)

      clusters.append([imin,imax,jmin,jmax,size])
      clusters=np.array(clusters)
      if len(clusters)>1:
      ind=np.argsort(clusters[:,-1])
      clusters=clusters[ind]
      return clusters


      Note that this recursive flood filling is called in a loop over all the pixels in the image.
      I really couldn't find anything already implemented, a library or something, and I am still quite a noob in this ,image processing, field, but I believe that it should be something optimized in some library.
      I was wondering whether anyone has any information of a flood filling function or the relevant library, that can also give me this output.
      The reason I want this output is twofold:
      1.So that I can find the position of the clusters and remove them (the rectangle surrounding them) from the picture so that I do background correction.
      2.So that draw a (red)-rectangular around those clusters that have the wished contrast and the wished size.
      Hope my question is clear! If not I will be happy to get some feedback and explain the unclear parts.
      Also if you have any advice in order to speed it up it is most welcome!
      Thank you!







      output coordinates cluster-computing flood-fill






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 20 '18 at 20:14









      LefterisLefteris

      11




      11
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400838%2fextracting-cluster-coordinates-out-of-flood-fill-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400838%2fextracting-cluster-coordinates-out-of-flood-fill-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          RAC Tourist Trophy