Finding Carmichael Numbers
I cant seem to figure out why my python code is telling me wrong carmichael numbers. Thanks in advance. I just cant see the error in the algorithm.
def isCarmichaelNumber( x ):
for y in range(2,x):
#check if prime
if math.gcd (x, y) == 1:
if pow(y, x-1, x) != 1:
return False
return True
print(isCarmichaelNumber(1847))
python algorithm
add a comment |
I cant seem to figure out why my python code is telling me wrong carmichael numbers. Thanks in advance. I just cant see the error in the algorithm.
def isCarmichaelNumber( x ):
for y in range(2,x):
#check if prime
if math.gcd (x, y) == 1:
if pow(y, x-1, x) != 1:
return False
return True
print(isCarmichaelNumber(1847))
python algorithm
add a comment |
I cant seem to figure out why my python code is telling me wrong carmichael numbers. Thanks in advance. I just cant see the error in the algorithm.
def isCarmichaelNumber( x ):
for y in range(2,x):
#check if prime
if math.gcd (x, y) == 1:
if pow(y, x-1, x) != 1:
return False
return True
print(isCarmichaelNumber(1847))
python algorithm
I cant seem to figure out why my python code is telling me wrong carmichael numbers. Thanks in advance. I just cant see the error in the algorithm.
def isCarmichaelNumber( x ):
for y in range(2,x):
#check if prime
if math.gcd (x, y) == 1:
if pow(y, x-1, x) != 1:
return False
return True
print(isCarmichaelNumber(1847))
python algorithm
python algorithm
asked Nov 20 at 6:21
ShelbyJ
183
183
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You're not checking to see whether x
is prime. By definition, a Carmichael number must be composite. For any prime x
, pow(y, x-1, x) == 1
for all y
in range(2, x)
, so will incorrectly return True
. 1847 is prime, which is why your function claims it's a Carmichael number.
One way to fix it:
def isCarmichaelNumber(x):
import math
isprime = True
for y in range(2,x):
if math.gcd(x, y) == 1:
if pow(y, x-1, x) != 1:
return False
else:
isprime = False
return not isprime
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387324%2ffinding-carmichael-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You're not checking to see whether x
is prime. By definition, a Carmichael number must be composite. For any prime x
, pow(y, x-1, x) == 1
for all y
in range(2, x)
, so will incorrectly return True
. 1847 is prime, which is why your function claims it's a Carmichael number.
One way to fix it:
def isCarmichaelNumber(x):
import math
isprime = True
for y in range(2,x):
if math.gcd(x, y) == 1:
if pow(y, x-1, x) != 1:
return False
else:
isprime = False
return not isprime
add a comment |
You're not checking to see whether x
is prime. By definition, a Carmichael number must be composite. For any prime x
, pow(y, x-1, x) == 1
for all y
in range(2, x)
, so will incorrectly return True
. 1847 is prime, which is why your function claims it's a Carmichael number.
One way to fix it:
def isCarmichaelNumber(x):
import math
isprime = True
for y in range(2,x):
if math.gcd(x, y) == 1:
if pow(y, x-1, x) != 1:
return False
else:
isprime = False
return not isprime
add a comment |
You're not checking to see whether x
is prime. By definition, a Carmichael number must be composite. For any prime x
, pow(y, x-1, x) == 1
for all y
in range(2, x)
, so will incorrectly return True
. 1847 is prime, which is why your function claims it's a Carmichael number.
One way to fix it:
def isCarmichaelNumber(x):
import math
isprime = True
for y in range(2,x):
if math.gcd(x, y) == 1:
if pow(y, x-1, x) != 1:
return False
else:
isprime = False
return not isprime
You're not checking to see whether x
is prime. By definition, a Carmichael number must be composite. For any prime x
, pow(y, x-1, x) == 1
for all y
in range(2, x)
, so will incorrectly return True
. 1847 is prime, which is why your function claims it's a Carmichael number.
One way to fix it:
def isCarmichaelNumber(x):
import math
isprime = True
for y in range(2,x):
if math.gcd(x, y) == 1:
if pow(y, x-1, x) != 1:
return False
else:
isprime = False
return not isprime
answered Nov 20 at 6:39
Tim Peters
41.8k67293
41.8k67293
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387324%2ffinding-carmichael-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown