how to split geojson data in columns with spark sql scala












1















I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question

























  • What version of Spark do you use? In 2.4 you have higher-order functions for this.

    – Jacek Laskowski
    Nov 25 '18 at 19:51
















1















I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question

























  • What version of Spark do you use? In 2.4 you have higher-order functions for this.

    – Jacek Laskowski
    Nov 25 '18 at 19:51














1












1








1


0






I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question
















I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help







scala apache-spark-sql






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 25 '18 at 19:51









Jacek Laskowski

45.3k18134273




45.3k18134273










asked Nov 22 '18 at 15:31









MakMak

126




126













  • What version of Spark do you use? In 2.4 you have higher-order functions for this.

    – Jacek Laskowski
    Nov 25 '18 at 19:51



















  • What version of Spark do you use? In 2.4 you have higher-order functions for this.

    – Jacek Laskowski
    Nov 25 '18 at 19:51

















What version of Spark do you use? In 2.4 you have higher-order functions for this.

– Jacek Laskowski
Nov 25 '18 at 19:51





What version of Spark do you use? In 2.4 you have higher-order functions for this.

– Jacek Laskowski
Nov 25 '18 at 19:51












1 Answer
1






active

oldest

votes


















0














Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



import sparkSession.implicits._

val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

resultDf.show()
resultDf.printSchema()


Input data (formatted):



{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}


Result:



+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+

root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434176%2fhow-to-split-geojson-data-in-columns-with-spark-sql-scala%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



    import sparkSession.implicits._

    val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

    val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
    .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
    "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

    resultDf.show()
    resultDf.printSchema()


    Input data (formatted):



    {
    "features": [
    {
    "properties": {
    "auswertezeit": "x",
    "geschwindigkeit": 1,
    "strecke_id": 11,
    "verkehrsstatus": "xx"
    }
    },
    {
    "properties": {
    "auswertezeit": "y",
    "geschwindigkeit": 2,
    "strecke_id": 22,
    "verkehrsstatus": "yy"
    }
    }
    ],
    "type": "xyz"
    }


    Result:



    +------------+---------------+----------+--------------+
    |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
    +------------+---------------+----------+--------------+
    | x| 1| 11| xx|
    | y| 2| 22| yy|
    +------------+---------------+----------+--------------+

    root
    |-- auswertezeit: string (nullable = true)
    |-- geschwindigkeit: long (nullable = true)
    |-- strecke_id: long (nullable = true)
    |-- verkehrsstatus: string (nullable = true)





    share|improve this answer




























      0














      Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



      import sparkSession.implicits._

      val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

      val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
      .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
      "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

      resultDf.show()
      resultDf.printSchema()


      Input data (formatted):



      {
      "features": [
      {
      "properties": {
      "auswertezeit": "x",
      "geschwindigkeit": 1,
      "strecke_id": 11,
      "verkehrsstatus": "xx"
      }
      },
      {
      "properties": {
      "auswertezeit": "y",
      "geschwindigkeit": 2,
      "strecke_id": 22,
      "verkehrsstatus": "yy"
      }
      }
      ],
      "type": "xyz"
      }


      Result:



      +------------+---------------+----------+--------------+
      |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
      +------------+---------------+----------+--------------+
      | x| 1| 11| xx|
      | y| 2| 22| yy|
      +------------+---------------+----------+--------------+

      root
      |-- auswertezeit: string (nullable = true)
      |-- geschwindigkeit: long (nullable = true)
      |-- strecke_id: long (nullable = true)
      |-- verkehrsstatus: string (nullable = true)





      share|improve this answer


























        0












        0








        0







        Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



        import sparkSession.implicits._

        val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

        val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
        .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
        "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

        resultDf.show()
        resultDf.printSchema()


        Input data (formatted):



        {
        "features": [
        {
        "properties": {
        "auswertezeit": "x",
        "geschwindigkeit": 1,
        "strecke_id": 11,
        "verkehrsstatus": "xx"
        }
        },
        {
        "properties": {
        "auswertezeit": "y",
        "geschwindigkeit": 2,
        "strecke_id": 22,
        "verkehrsstatus": "yy"
        }
        }
        ],
        "type": "xyz"
        }


        Result:



        +------------+---------------+----------+--------------+
        |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
        +------------+---------------+----------+--------------+
        | x| 1| 11| xx|
        | y| 2| 22| yy|
        +------------+---------------+----------+--------------+

        root
        |-- auswertezeit: string (nullable = true)
        |-- geschwindigkeit: long (nullable = true)
        |-- strecke_id: long (nullable = true)
        |-- verkehrsstatus: string (nullable = true)





        share|improve this answer













        Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



        import sparkSession.implicits._

        val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

        val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
        .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
        "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

        resultDf.show()
        resultDf.printSchema()


        Input data (formatted):



        {
        "features": [
        {
        "properties": {
        "auswertezeit": "x",
        "geschwindigkeit": 1,
        "strecke_id": 11,
        "verkehrsstatus": "xx"
        }
        },
        {
        "properties": {
        "auswertezeit": "y",
        "geschwindigkeit": 2,
        "strecke_id": 22,
        "verkehrsstatus": "yy"
        }
        }
        ],
        "type": "xyz"
        }


        Result:



        +------------+---------------+----------+--------------+
        |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
        +------------+---------------+----------+--------------+
        | x| 1| 11| xx|
        | y| 2| 22| yy|
        +------------+---------------+----------+--------------+

        root
        |-- auswertezeit: string (nullable = true)
        |-- geschwindigkeit: long (nullable = true)
        |-- strecke_id: long (nullable = true)
        |-- verkehrsstatus: string (nullable = true)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 22 '18 at 20:20









        morsikmorsik

        699815




        699815
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434176%2fhow-to-split-geojson-data-in-columns-with-spark-sql-scala%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

            Alcedinidae

            Origin of the phrase “under your belt”?