Encoding universal types in terms of existential types?











up vote
5
down vote

favorite
1












In System F, the type exists a. P can be encoded as forall b. (forall a. P -> b) -> b in the sense that any System F term using an existential can be expressed in terms of this encoding respecting the typing and reduction rules.



In "Types and Programming Languages", the following exercise appears:




Can we encode universal types in terms of existential types?




My intuition says that this isn't possible because in some way the "existential packaging" mechanism simply isn't as powerful as the "type abstraction" mechanism. How do I formally show this?



I am not even sure what I need to prove to formally show this result.










share|improve this question
























  • You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
    – Juan Pablo Santos
    Nov 19 at 16:34












  • @JuanPabloSantos I fail to see the connection
    – Agnishom Chattopadhyay
    Nov 19 at 16:41















up vote
5
down vote

favorite
1












In System F, the type exists a. P can be encoded as forall b. (forall a. P -> b) -> b in the sense that any System F term using an existential can be expressed in terms of this encoding respecting the typing and reduction rules.



In "Types and Programming Languages", the following exercise appears:




Can we encode universal types in terms of existential types?




My intuition says that this isn't possible because in some way the "existential packaging" mechanism simply isn't as powerful as the "type abstraction" mechanism. How do I formally show this?



I am not even sure what I need to prove to formally show this result.










share|improve this question
























  • You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
    – Juan Pablo Santos
    Nov 19 at 16:34












  • @JuanPabloSantos I fail to see the connection
    – Agnishom Chattopadhyay
    Nov 19 at 16:41













up vote
5
down vote

favorite
1









up vote
5
down vote

favorite
1






1





In System F, the type exists a. P can be encoded as forall b. (forall a. P -> b) -> b in the sense that any System F term using an existential can be expressed in terms of this encoding respecting the typing and reduction rules.



In "Types and Programming Languages", the following exercise appears:




Can we encode universal types in terms of existential types?




My intuition says that this isn't possible because in some way the "existential packaging" mechanism simply isn't as powerful as the "type abstraction" mechanism. How do I formally show this?



I am not even sure what I need to prove to formally show this result.










share|improve this question















In System F, the type exists a. P can be encoded as forall b. (forall a. P -> b) -> b in the sense that any System F term using an existential can be expressed in terms of this encoding respecting the typing and reduction rules.



In "Types and Programming Languages", the following exercise appears:




Can we encode universal types in terms of existential types?




My intuition says that this isn't possible because in some way the "existential packaging" mechanism simply isn't as powerful as the "type abstraction" mechanism. How do I formally show this?



I am not even sure what I need to prove to formally show this result.







lambda-calculus existential-type type-theory system-f






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 19 at 16:40

























asked Nov 19 at 13:33









Agnishom Chattopadhyay

819920




819920












  • You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
    – Juan Pablo Santos
    Nov 19 at 16:34












  • @JuanPabloSantos I fail to see the connection
    – Agnishom Chattopadhyay
    Nov 19 at 16:41


















  • You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
    – Juan Pablo Santos
    Nov 19 at 16:34












  • @JuanPabloSantos I fail to see the connection
    – Agnishom Chattopadhyay
    Nov 19 at 16:41
















You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
– Juan Pablo Santos
Nov 19 at 16:34






You might want to look into skolemization: en.wikipedia.org/wiki/Skolem_normal_form
– Juan Pablo Santos
Nov 19 at 16:34














@JuanPabloSantos I fail to see the connection
– Agnishom Chattopadhyay
Nov 19 at 16:41




@JuanPabloSantos I fail to see the connection
– Agnishom Chattopadhyay
Nov 19 at 16:41

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53375769%2fencoding-universal-types-in-terms-of-existential-types%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53375769%2fencoding-universal-types-in-terms-of-existential-types%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

"Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

Alcedinidae

Origin of the phrase “under your belt”?