For loop (nested) for value_counts() with Pandas












1















I have a DataFrame like the following one:



enter image description here



Now I would like to do value_counts(), but the problem I have is when I use the following code:



with open('out.csv', 'w') as out:
for col in df.columns:
res = df[col].value_counts()
.reset_index()
.rename(columns={col: 'count', 'index': col})

res.to_csv(out, index=False)


I get the following wrong results:



enter image description here



But what I need is the following:



enter image description here










share|improve this question





























    1















    I have a DataFrame like the following one:



    enter image description here



    Now I would like to do value_counts(), but the problem I have is when I use the following code:



    with open('out.csv', 'w') as out:
    for col in df.columns:
    res = df[col].value_counts()
    .reset_index()
    .rename(columns={col: 'count', 'index': col})

    res.to_csv(out, index=False)


    I get the following wrong results:



    enter image description here



    But what I need is the following:



    enter image description here










    share|improve this question



























      1












      1








      1








      I have a DataFrame like the following one:



      enter image description here



      Now I would like to do value_counts(), but the problem I have is when I use the following code:



      with open('out.csv', 'w') as out:
      for col in df.columns:
      res = df[col].value_counts()
      .reset_index()
      .rename(columns={col: 'count', 'index': col})

      res.to_csv(out, index=False)


      I get the following wrong results:



      enter image description here



      But what I need is the following:



      enter image description here










      share|improve this question
















      I have a DataFrame like the following one:



      enter image description here



      Now I would like to do value_counts(), but the problem I have is when I use the following code:



      with open('out.csv', 'w') as out:
      for col in df.columns:
      res = df[col].value_counts()
      .reset_index()
      .rename(columns={col: 'count', 'index': col})

      res.to_csv(out, index=False)


      I get the following wrong results:



      enter image description here



      But what I need is the following:



      enter image description here







      python python-3.x pandas dataframe for-loop






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 22 '18 at 9:49









      jpp

      101k2163112




      101k2163112










      asked Nov 22 '18 at 9:26









      pranesh santhanampranesh santhanam

      82




      82
























          1 Answer
          1






          active

          oldest

          votes


















          0















          value_counts + melt



          You can apply value_counts to each series, then melt your dataframe:



          df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
          '02-01-2018': [4, 2, 3, 1, 3, 1]})

          res = df.apply(pd.Series.value_counts).reset_index()
          res = pd.melt(res, id_vars='index')
          res.columns = ['Code', 'Date', 'Freq']

          print(res)

          Code Date Freq
          0 1 01-01-2018 2
          1 2 01-01-2018 2
          2 3 01-01-2018 1
          3 4 01-01-2018 1
          4 1 02-01-2018 2
          5 2 02-01-2018 1
          6 3 02-01-2018 2
          7 4 02-01-2018 1





          share|improve this answer

























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427624%2ffor-loop-nested-for-value-counts-with-pandas%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0















            value_counts + melt



            You can apply value_counts to each series, then melt your dataframe:



            df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
            '02-01-2018': [4, 2, 3, 1, 3, 1]})

            res = df.apply(pd.Series.value_counts).reset_index()
            res = pd.melt(res, id_vars='index')
            res.columns = ['Code', 'Date', 'Freq']

            print(res)

            Code Date Freq
            0 1 01-01-2018 2
            1 2 01-01-2018 2
            2 3 01-01-2018 1
            3 4 01-01-2018 1
            4 1 02-01-2018 2
            5 2 02-01-2018 1
            6 3 02-01-2018 2
            7 4 02-01-2018 1





            share|improve this answer






























              0















              value_counts + melt



              You can apply value_counts to each series, then melt your dataframe:



              df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
              '02-01-2018': [4, 2, 3, 1, 3, 1]})

              res = df.apply(pd.Series.value_counts).reset_index()
              res = pd.melt(res, id_vars='index')
              res.columns = ['Code', 'Date', 'Freq']

              print(res)

              Code Date Freq
              0 1 01-01-2018 2
              1 2 01-01-2018 2
              2 3 01-01-2018 1
              3 4 01-01-2018 1
              4 1 02-01-2018 2
              5 2 02-01-2018 1
              6 3 02-01-2018 2
              7 4 02-01-2018 1





              share|improve this answer




























                0












                0








                0








                value_counts + melt



                You can apply value_counts to each series, then melt your dataframe:



                df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
                '02-01-2018': [4, 2, 3, 1, 3, 1]})

                res = df.apply(pd.Series.value_counts).reset_index()
                res = pd.melt(res, id_vars='index')
                res.columns = ['Code', 'Date', 'Freq']

                print(res)

                Code Date Freq
                0 1 01-01-2018 2
                1 2 01-01-2018 2
                2 3 01-01-2018 1
                3 4 01-01-2018 1
                4 1 02-01-2018 2
                5 2 02-01-2018 1
                6 3 02-01-2018 2
                7 4 02-01-2018 1





                share|improve this answer
















                value_counts + melt



                You can apply value_counts to each series, then melt your dataframe:



                df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
                '02-01-2018': [4, 2, 3, 1, 3, 1]})

                res = df.apply(pd.Series.value_counts).reset_index()
                res = pd.melt(res, id_vars='index')
                res.columns = ['Code', 'Date', 'Freq']

                print(res)

                Code Date Freq
                0 1 01-01-2018 2
                1 2 01-01-2018 2
                2 3 01-01-2018 1
                3 4 01-01-2018 1
                4 1 02-01-2018 2
                5 2 02-01-2018 1
                6 3 02-01-2018 2
                7 4 02-01-2018 1






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 22 '18 at 9:53

























                answered Nov 22 '18 at 9:37









                jppjpp

                101k2163112




                101k2163112
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427624%2ffor-loop-nested-for-value-counts-with-pandas%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                    Alcedinidae

                    Origin of the phrase “under your belt”?