For loop (nested) for value_counts() with Pandas
I have a DataFrame
like the following one:
Now I would like to do value_counts()
, but the problem I have is when I use the following code:
with open('out.csv', 'w') as out:
for col in df.columns:
res = df[col].value_counts()
.reset_index()
.rename(columns={col: 'count', 'index': col})
res.to_csv(out, index=False)
I get the following wrong results:
But what I need is the following:
python python-3.x pandas dataframe for-loop
add a comment |
I have a DataFrame
like the following one:
Now I would like to do value_counts()
, but the problem I have is when I use the following code:
with open('out.csv', 'w') as out:
for col in df.columns:
res = df[col].value_counts()
.reset_index()
.rename(columns={col: 'count', 'index': col})
res.to_csv(out, index=False)
I get the following wrong results:
But what I need is the following:
python python-3.x pandas dataframe for-loop
add a comment |
I have a DataFrame
like the following one:
Now I would like to do value_counts()
, but the problem I have is when I use the following code:
with open('out.csv', 'w') as out:
for col in df.columns:
res = df[col].value_counts()
.reset_index()
.rename(columns={col: 'count', 'index': col})
res.to_csv(out, index=False)
I get the following wrong results:
But what I need is the following:
python python-3.x pandas dataframe for-loop
I have a DataFrame
like the following one:
Now I would like to do value_counts()
, but the problem I have is when I use the following code:
with open('out.csv', 'w') as out:
for col in df.columns:
res = df[col].value_counts()
.reset_index()
.rename(columns={col: 'count', 'index': col})
res.to_csv(out, index=False)
I get the following wrong results:
But what I need is the following:
python python-3.x pandas dataframe for-loop
python python-3.x pandas dataframe for-loop
edited Nov 22 '18 at 9:49
jpp
101k2163112
101k2163112
asked Nov 22 '18 at 9:26
pranesh santhanampranesh santhanam
82
82
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
value_counts
+ melt
You can apply value_counts
to each series, then melt your dataframe:
df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
'02-01-2018': [4, 2, 3, 1, 3, 1]})
res = df.apply(pd.Series.value_counts).reset_index()
res = pd.melt(res, id_vars='index')
res.columns = ['Code', 'Date', 'Freq']
print(res)
Code Date Freq
0 1 01-01-2018 2
1 2 01-01-2018 2
2 3 01-01-2018 1
3 4 01-01-2018 1
4 1 02-01-2018 2
5 2 02-01-2018 1
6 3 02-01-2018 2
7 4 02-01-2018 1
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427624%2ffor-loop-nested-for-value-counts-with-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
value_counts
+ melt
You can apply value_counts
to each series, then melt your dataframe:
df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
'02-01-2018': [4, 2, 3, 1, 3, 1]})
res = df.apply(pd.Series.value_counts).reset_index()
res = pd.melt(res, id_vars='index')
res.columns = ['Code', 'Date', 'Freq']
print(res)
Code Date Freq
0 1 01-01-2018 2
1 2 01-01-2018 2
2 3 01-01-2018 1
3 4 01-01-2018 1
4 1 02-01-2018 2
5 2 02-01-2018 1
6 3 02-01-2018 2
7 4 02-01-2018 1
add a comment |
value_counts
+ melt
You can apply value_counts
to each series, then melt your dataframe:
df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
'02-01-2018': [4, 2, 3, 1, 3, 1]})
res = df.apply(pd.Series.value_counts).reset_index()
res = pd.melt(res, id_vars='index')
res.columns = ['Code', 'Date', 'Freq']
print(res)
Code Date Freq
0 1 01-01-2018 2
1 2 01-01-2018 2
2 3 01-01-2018 1
3 4 01-01-2018 1
4 1 02-01-2018 2
5 2 02-01-2018 1
6 3 02-01-2018 2
7 4 02-01-2018 1
add a comment |
value_counts
+ melt
You can apply value_counts
to each series, then melt your dataframe:
df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
'02-01-2018': [4, 2, 3, 1, 3, 1]})
res = df.apply(pd.Series.value_counts).reset_index()
res = pd.melt(res, id_vars='index')
res.columns = ['Code', 'Date', 'Freq']
print(res)
Code Date Freq
0 1 01-01-2018 2
1 2 01-01-2018 2
2 3 01-01-2018 1
3 4 01-01-2018 1
4 1 02-01-2018 2
5 2 02-01-2018 1
6 3 02-01-2018 2
7 4 02-01-2018 1
value_counts
+ melt
You can apply value_counts
to each series, then melt your dataframe:
df = pd.DataFrame({'01-01-2018': [1, 2, 3, 4, 1, 2],
'02-01-2018': [4, 2, 3, 1, 3, 1]})
res = df.apply(pd.Series.value_counts).reset_index()
res = pd.melt(res, id_vars='index')
res.columns = ['Code', 'Date', 'Freq']
print(res)
Code Date Freq
0 1 01-01-2018 2
1 2 01-01-2018 2
2 3 01-01-2018 1
3 4 01-01-2018 1
4 1 02-01-2018 2
5 2 02-01-2018 1
6 3 02-01-2018 2
7 4 02-01-2018 1
edited Nov 22 '18 at 9:53
answered Nov 22 '18 at 9:37
jppjpp
101k2163112
101k2163112
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53427624%2ffor-loop-nested-for-value-counts-with-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown