Justifying the trend component in a time series?












2












$begingroup$


I am working on a time series forecasting problem ,I used Dickey–Fuller test to check the stationary of the time series and the p value is 0.000835 , hense I rejected the null hypothesis and assumed that it's a stationary time series.



I decomposed the time series and the trend component does not have any particular pattern.plot-enter image description here



I want to ask how can we justify that a time series has any particular trend, Is this decomposition enough to ensure and guarantee that this time series has no trend ?










share|cite|improve this question







New contributor




A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    I am working on a time series forecasting problem ,I used Dickey–Fuller test to check the stationary of the time series and the p value is 0.000835 , hense I rejected the null hypothesis and assumed that it's a stationary time series.



    I decomposed the time series and the trend component does not have any particular pattern.plot-enter image description here



    I want to ask how can we justify that a time series has any particular trend, Is this decomposition enough to ensure and guarantee that this time series has no trend ?










    share|cite|improve this question







    New contributor




    A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2





      $begingroup$


      I am working on a time series forecasting problem ,I used Dickey–Fuller test to check the stationary of the time series and the p value is 0.000835 , hense I rejected the null hypothesis and assumed that it's a stationary time series.



      I decomposed the time series and the trend component does not have any particular pattern.plot-enter image description here



      I want to ask how can we justify that a time series has any particular trend, Is this decomposition enough to ensure and guarantee that this time series has no trend ?










      share|cite|improve this question







      New contributor




      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am working on a time series forecasting problem ,I used Dickey–Fuller test to check the stationary of the time series and the p value is 0.000835 , hense I rejected the null hypothesis and assumed that it's a stationary time series.



      I decomposed the time series and the trend component does not have any particular pattern.plot-enter image description here



      I want to ask how can we justify that a time series has any particular trend, Is this decomposition enough to ensure and guarantee that this time series has no trend ?







      time-series statistical-significance






      share|cite|improve this question







      New contributor




      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 17 hours ago









      A.kumarA.kumar

      111




      111




      New contributor




      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      A.kumar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The Augmented Dickey–Fuller test is UNIT ROOT test - NOT a stationarity test. The null-hypothesis on this test is that the data have been generated by a restricted AR model containing a unit-root. Rejecting this hypothesis DOES NOT mean the series is stationary. It just means that there is enough evidence to allow you rejecting the hypothesis of a very specific form of NON-stationarity (i.e. unit root). Evidence is assessed contrastively i.e. v.s. an unrestricted AR model. Rejecting the hypothesis that an animal is a chicken with an alternative being a pig doesn't mean the animal might not be a horse! The examined animal might contrastively not look like a chicken (e.g. because it has 4 legs) but that doesn't make it a pig.



          Now look at your decomposition. You could see with a bare eye data don't look stationary. Trend as well as variance change with time. The decomposition does not support your conclusion. It supports the opposite view. There both parametric as well as non-parametric ways to check changes in the trend of the series. For example (see following poster about Detecting Changes in the Mean ):



          test






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            visually there is an apparent autoregressive process and a change in model error variance .. thus non-stationarity is the call.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "65"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });






              A.kumar is a new contributor. Be nice, and check out our Code of Conduct.










              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397464%2fjustifying-the-trend-component-in-a-time-series%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              The Augmented Dickey–Fuller test is UNIT ROOT test - NOT a stationarity test. The null-hypothesis on this test is that the data have been generated by a restricted AR model containing a unit-root. Rejecting this hypothesis DOES NOT mean the series is stationary. It just means that there is enough evidence to allow you rejecting the hypothesis of a very specific form of NON-stationarity (i.e. unit root). Evidence is assessed contrastively i.e. v.s. an unrestricted AR model. Rejecting the hypothesis that an animal is a chicken with an alternative being a pig doesn't mean the animal might not be a horse! The examined animal might contrastively not look like a chicken (e.g. because it has 4 legs) but that doesn't make it a pig.



              Now look at your decomposition. You could see with a bare eye data don't look stationary. Trend as well as variance change with time. The decomposition does not support your conclusion. It supports the opposite view. There both parametric as well as non-parametric ways to check changes in the trend of the series. For example (see following poster about Detecting Changes in the Mean ):



              test






              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                The Augmented Dickey–Fuller test is UNIT ROOT test - NOT a stationarity test. The null-hypothesis on this test is that the data have been generated by a restricted AR model containing a unit-root. Rejecting this hypothesis DOES NOT mean the series is stationary. It just means that there is enough evidence to allow you rejecting the hypothesis of a very specific form of NON-stationarity (i.e. unit root). Evidence is assessed contrastively i.e. v.s. an unrestricted AR model. Rejecting the hypothesis that an animal is a chicken with an alternative being a pig doesn't mean the animal might not be a horse! The examined animal might contrastively not look like a chicken (e.g. because it has 4 legs) but that doesn't make it a pig.



                Now look at your decomposition. You could see with a bare eye data don't look stationary. Trend as well as variance change with time. The decomposition does not support your conclusion. It supports the opposite view. There both parametric as well as non-parametric ways to check changes in the trend of the series. For example (see following poster about Detecting Changes in the Mean ):



                test






                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  The Augmented Dickey–Fuller test is UNIT ROOT test - NOT a stationarity test. The null-hypothesis on this test is that the data have been generated by a restricted AR model containing a unit-root. Rejecting this hypothesis DOES NOT mean the series is stationary. It just means that there is enough evidence to allow you rejecting the hypothesis of a very specific form of NON-stationarity (i.e. unit root). Evidence is assessed contrastively i.e. v.s. an unrestricted AR model. Rejecting the hypothesis that an animal is a chicken with an alternative being a pig doesn't mean the animal might not be a horse! The examined animal might contrastively not look like a chicken (e.g. because it has 4 legs) but that doesn't make it a pig.



                  Now look at your decomposition. You could see with a bare eye data don't look stationary. Trend as well as variance change with time. The decomposition does not support your conclusion. It supports the opposite view. There both parametric as well as non-parametric ways to check changes in the trend of the series. For example (see following poster about Detecting Changes in the Mean ):



                  test






                  share|cite|improve this answer











                  $endgroup$



                  The Augmented Dickey–Fuller test is UNIT ROOT test - NOT a stationarity test. The null-hypothesis on this test is that the data have been generated by a restricted AR model containing a unit-root. Rejecting this hypothesis DOES NOT mean the series is stationary. It just means that there is enough evidence to allow you rejecting the hypothesis of a very specific form of NON-stationarity (i.e. unit root). Evidence is assessed contrastively i.e. v.s. an unrestricted AR model. Rejecting the hypothesis that an animal is a chicken with an alternative being a pig doesn't mean the animal might not be a horse! The examined animal might contrastively not look like a chicken (e.g. because it has 4 legs) but that doesn't make it a pig.



                  Now look at your decomposition. You could see with a bare eye data don't look stationary. Trend as well as variance change with time. The decomposition does not support your conclusion. It supports the opposite view. There both parametric as well as non-parametric ways to check changes in the trend of the series. For example (see following poster about Detecting Changes in the Mean ):



                  test







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 14 hours ago

























                  answered 14 hours ago









                  StatsStats

                  50619




                  50619

























                      2












                      $begingroup$

                      visually there is an apparent autoregressive process and a change in model error variance .. thus non-stationarity is the call.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        visually there is an apparent autoregressive process and a change in model error variance .. thus non-stationarity is the call.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          visually there is an apparent autoregressive process and a change in model error variance .. thus non-stationarity is the call.






                          share|cite|improve this answer









                          $endgroup$



                          visually there is an apparent autoregressive process and a change in model error variance .. thus non-stationarity is the call.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 14 hours ago









                          IrishStatIrishStat

                          21k42241




                          21k42241






















                              A.kumar is a new contributor. Be nice, and check out our Code of Conduct.










                              draft saved

                              draft discarded


















                              A.kumar is a new contributor. Be nice, and check out our Code of Conduct.













                              A.kumar is a new contributor. Be nice, and check out our Code of Conduct.












                              A.kumar is a new contributor. Be nice, and check out our Code of Conduct.
















                              Thanks for contributing an answer to Cross Validated!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f397464%2fjustifying-the-trend-component-in-a-time-series%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                              Alcedinidae

                              RAC Tourist Trophy