Pólya urn flip and roll
$begingroup$
Problem statement
Pólya is playing about with his urn again and he wants you to help him calculate some probabilities.
In this urn experiment Pólya has an urn which initially contains 1 red and 1 blue bead.
For every iteration, he reaches in and retrieves a bead, then inspects the colour and places the bead back in the urn.
He then flips a fair coin, if the coin lands heads he will insert a fair 6 sided die roll amount of the same coloured bead into the urn, if it lands tails he will remove half the number of the same colored bead from the urn (Using integer division - so if the number of beads of the selected colour is odd he will remove (c-1)/2
where c is the number of beads of that colour)
Given an integer n ≥ 0 and a decimal r > 0, give the probability to 2 decimal places that the ratio between the colours of beads after n iterations is greater than or equal to r in the shortest number of bytes.
An example set of iterations:
Let (x, y) define the urn such that it contains x red beads and y blue beads.
Iteration Urn Ratio
0 (1,1) 1
1 (5,1) 5 //Red bead retrieved, coin flip heads, die roll 4
2 (5,1) 5 //Blue bead retrieved, coin flip tails
3 (3,1) 3 //Red bead retrieved, coin flip tails
4 (3,4) 1.333... //Blue bead retrieved, coin flip heads, die roll 3
As can be seen the Ratio r is always ≥ 1 (so it's the greater of red or blue divided by the lesser)
Test cases:
Let F(n, r) define application of the function for n iterations and a ratio of r
F(0,5) = 0.00
F(1,2) = 0.50
F(1,3) = 0.42
F(5,5) = 0.28
F(10,4) = 0.31
F(40,6.25) = 0.14
This is code golf, so the shortest solution in bytes wins.
code-golf probability-theory
New contributor
$endgroup$
add a comment |
$begingroup$
Problem statement
Pólya is playing about with his urn again and he wants you to help him calculate some probabilities.
In this urn experiment Pólya has an urn which initially contains 1 red and 1 blue bead.
For every iteration, he reaches in and retrieves a bead, then inspects the colour and places the bead back in the urn.
He then flips a fair coin, if the coin lands heads he will insert a fair 6 sided die roll amount of the same coloured bead into the urn, if it lands tails he will remove half the number of the same colored bead from the urn (Using integer division - so if the number of beads of the selected colour is odd he will remove (c-1)/2
where c is the number of beads of that colour)
Given an integer n ≥ 0 and a decimal r > 0, give the probability to 2 decimal places that the ratio between the colours of beads after n iterations is greater than or equal to r in the shortest number of bytes.
An example set of iterations:
Let (x, y) define the urn such that it contains x red beads and y blue beads.
Iteration Urn Ratio
0 (1,1) 1
1 (5,1) 5 //Red bead retrieved, coin flip heads, die roll 4
2 (5,1) 5 //Blue bead retrieved, coin flip tails
3 (3,1) 3 //Red bead retrieved, coin flip tails
4 (3,4) 1.333... //Blue bead retrieved, coin flip heads, die roll 3
As can be seen the Ratio r is always ≥ 1 (so it's the greater of red or blue divided by the lesser)
Test cases:
Let F(n, r) define application of the function for n iterations and a ratio of r
F(0,5) = 0.00
F(1,2) = 0.50
F(1,3) = 0.42
F(5,5) = 0.28
F(10,4) = 0.31
F(40,6.25) = 0.14
This is code golf, so the shortest solution in bytes wins.
code-golf probability-theory
New contributor
$endgroup$
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday
add a comment |
$begingroup$
Problem statement
Pólya is playing about with his urn again and he wants you to help him calculate some probabilities.
In this urn experiment Pólya has an urn which initially contains 1 red and 1 blue bead.
For every iteration, he reaches in and retrieves a bead, then inspects the colour and places the bead back in the urn.
He then flips a fair coin, if the coin lands heads he will insert a fair 6 sided die roll amount of the same coloured bead into the urn, if it lands tails he will remove half the number of the same colored bead from the urn (Using integer division - so if the number of beads of the selected colour is odd he will remove (c-1)/2
where c is the number of beads of that colour)
Given an integer n ≥ 0 and a decimal r > 0, give the probability to 2 decimal places that the ratio between the colours of beads after n iterations is greater than or equal to r in the shortest number of bytes.
An example set of iterations:
Let (x, y) define the urn such that it contains x red beads and y blue beads.
Iteration Urn Ratio
0 (1,1) 1
1 (5,1) 5 //Red bead retrieved, coin flip heads, die roll 4
2 (5,1) 5 //Blue bead retrieved, coin flip tails
3 (3,1) 3 //Red bead retrieved, coin flip tails
4 (3,4) 1.333... //Blue bead retrieved, coin flip heads, die roll 3
As can be seen the Ratio r is always ≥ 1 (so it's the greater of red or blue divided by the lesser)
Test cases:
Let F(n, r) define application of the function for n iterations and a ratio of r
F(0,5) = 0.00
F(1,2) = 0.50
F(1,3) = 0.42
F(5,5) = 0.28
F(10,4) = 0.31
F(40,6.25) = 0.14
This is code golf, so the shortest solution in bytes wins.
code-golf probability-theory
New contributor
$endgroup$
Problem statement
Pólya is playing about with his urn again and he wants you to help him calculate some probabilities.
In this urn experiment Pólya has an urn which initially contains 1 red and 1 blue bead.
For every iteration, he reaches in and retrieves a bead, then inspects the colour and places the bead back in the urn.
He then flips a fair coin, if the coin lands heads he will insert a fair 6 sided die roll amount of the same coloured bead into the urn, if it lands tails he will remove half the number of the same colored bead from the urn (Using integer division - so if the number of beads of the selected colour is odd he will remove (c-1)/2
where c is the number of beads of that colour)
Given an integer n ≥ 0 and a decimal r > 0, give the probability to 2 decimal places that the ratio between the colours of beads after n iterations is greater than or equal to r in the shortest number of bytes.
An example set of iterations:
Let (x, y) define the urn such that it contains x red beads and y blue beads.
Iteration Urn Ratio
0 (1,1) 1
1 (5,1) 5 //Red bead retrieved, coin flip heads, die roll 4
2 (5,1) 5 //Blue bead retrieved, coin flip tails
3 (3,1) 3 //Red bead retrieved, coin flip tails
4 (3,4) 1.333... //Blue bead retrieved, coin flip heads, die roll 3
As can be seen the Ratio r is always ≥ 1 (so it's the greater of red or blue divided by the lesser)
Test cases:
Let F(n, r) define application of the function for n iterations and a ratio of r
F(0,5) = 0.00
F(1,2) = 0.50
F(1,3) = 0.42
F(5,5) = 0.28
F(10,4) = 0.31
F(40,6.25) = 0.14
This is code golf, so the shortest solution in bytes wins.
code-golf probability-theory
code-golf probability-theory
New contributor
New contributor
edited yesterday
Expired Data
New contributor
asked yesterday
Expired DataExpired Data
2115
2115
New contributor
New contributor
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday
add a comment |
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
JavaScript (ES7), 145 ... 129 124 123 bytes
Takes input as (r)(n)
. This is a naive solution that actually performs the entire simulation.
r=>g=(n,B=s=0,R=0,h=d=>++d<7?h(d,[0,d].map(b=>g(n,B/-~!!b,R/-~!b)&g(n,B+b,R+d-b))):s/24**-~n)=>n--?h``:s+=~B<=r*~R|~R<=r*~B
Try it online!
Too slow for the last 2 test cases.
Commented
r => // r = target ratio
g = ( // g is a recursive function taking:
n, // n = number of iterations
B = // B = number of blue beads, minus 1
s = 0, // s = number of times the target ratio was reached
R = 0, // R = number of red beads, minus 1
h = d => // h = recursive function taking d = 6-sided die value
++d < 7 ? // increment d; if d is less than or equal to 6:
h( // do a recursive call to h:
d, // using the new value of d
[0, d].map(b => // for b = 0 and b = d:
g( // do a first recursive call to g:
n, // leave n unchanged
B / -~!!b, // divide B by 2 if b is not equal to 0
R / -~!b // divide R by 2 if b is equal to 0
) & g( // do a second recursive call to g:
n, // leave n unchanged
B + b, // add b blue beads
R + d - b // add d - b red beads
) // end of recursive calls to g
) // end of map()
) // end of recursive call to h
: // else (d > 6):
s / 24 ** -~n // stop recursion and return s / (24 ** (n + 1))
) => // body of g:
n-- ? // decrement n; if n was not equal to 0:
h`` // invoke h with d = [''] (coerced to 0)
: // else:
s += // increment s if:
~B <= r * ~R | // either (-B-1) <= r*(-R-1), i.e. (B+1)/(R+1) >= r
~R <= r * ~B // or (-R-1) <= r*(-B-1), i.e. (R+1)/(B+1) >= r
$endgroup$
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "200"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Expired Data is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f181551%2fp%25c3%25b3lya-urn-flip-and-roll%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
JavaScript (ES7), 145 ... 129 124 123 bytes
Takes input as (r)(n)
. This is a naive solution that actually performs the entire simulation.
r=>g=(n,B=s=0,R=0,h=d=>++d<7?h(d,[0,d].map(b=>g(n,B/-~!!b,R/-~!b)&g(n,B+b,R+d-b))):s/24**-~n)=>n--?h``:s+=~B<=r*~R|~R<=r*~B
Try it online!
Too slow for the last 2 test cases.
Commented
r => // r = target ratio
g = ( // g is a recursive function taking:
n, // n = number of iterations
B = // B = number of blue beads, minus 1
s = 0, // s = number of times the target ratio was reached
R = 0, // R = number of red beads, minus 1
h = d => // h = recursive function taking d = 6-sided die value
++d < 7 ? // increment d; if d is less than or equal to 6:
h( // do a recursive call to h:
d, // using the new value of d
[0, d].map(b => // for b = 0 and b = d:
g( // do a first recursive call to g:
n, // leave n unchanged
B / -~!!b, // divide B by 2 if b is not equal to 0
R / -~!b // divide R by 2 if b is equal to 0
) & g( // do a second recursive call to g:
n, // leave n unchanged
B + b, // add b blue beads
R + d - b // add d - b red beads
) // end of recursive calls to g
) // end of map()
) // end of recursive call to h
: // else (d > 6):
s / 24 ** -~n // stop recursion and return s / (24 ** (n + 1))
) => // body of g:
n-- ? // decrement n; if n was not equal to 0:
h`` // invoke h with d = [''] (coerced to 0)
: // else:
s += // increment s if:
~B <= r * ~R | // either (-B-1) <= r*(-R-1), i.e. (B+1)/(R+1) >= r
~R <= r * ~B // or (-R-1) <= r*(-B-1), i.e. (R+1)/(B+1) >= r
$endgroup$
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
add a comment |
$begingroup$
JavaScript (ES7), 145 ... 129 124 123 bytes
Takes input as (r)(n)
. This is a naive solution that actually performs the entire simulation.
r=>g=(n,B=s=0,R=0,h=d=>++d<7?h(d,[0,d].map(b=>g(n,B/-~!!b,R/-~!b)&g(n,B+b,R+d-b))):s/24**-~n)=>n--?h``:s+=~B<=r*~R|~R<=r*~B
Try it online!
Too slow for the last 2 test cases.
Commented
r => // r = target ratio
g = ( // g is a recursive function taking:
n, // n = number of iterations
B = // B = number of blue beads, minus 1
s = 0, // s = number of times the target ratio was reached
R = 0, // R = number of red beads, minus 1
h = d => // h = recursive function taking d = 6-sided die value
++d < 7 ? // increment d; if d is less than or equal to 6:
h( // do a recursive call to h:
d, // using the new value of d
[0, d].map(b => // for b = 0 and b = d:
g( // do a first recursive call to g:
n, // leave n unchanged
B / -~!!b, // divide B by 2 if b is not equal to 0
R / -~!b // divide R by 2 if b is equal to 0
) & g( // do a second recursive call to g:
n, // leave n unchanged
B + b, // add b blue beads
R + d - b // add d - b red beads
) // end of recursive calls to g
) // end of map()
) // end of recursive call to h
: // else (d > 6):
s / 24 ** -~n // stop recursion and return s / (24 ** (n + 1))
) => // body of g:
n-- ? // decrement n; if n was not equal to 0:
h`` // invoke h with d = [''] (coerced to 0)
: // else:
s += // increment s if:
~B <= r * ~R | // either (-B-1) <= r*(-R-1), i.e. (B+1)/(R+1) >= r
~R <= r * ~B // or (-R-1) <= r*(-B-1), i.e. (R+1)/(B+1) >= r
$endgroup$
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
add a comment |
$begingroup$
JavaScript (ES7), 145 ... 129 124 123 bytes
Takes input as (r)(n)
. This is a naive solution that actually performs the entire simulation.
r=>g=(n,B=s=0,R=0,h=d=>++d<7?h(d,[0,d].map(b=>g(n,B/-~!!b,R/-~!b)&g(n,B+b,R+d-b))):s/24**-~n)=>n--?h``:s+=~B<=r*~R|~R<=r*~B
Try it online!
Too slow for the last 2 test cases.
Commented
r => // r = target ratio
g = ( // g is a recursive function taking:
n, // n = number of iterations
B = // B = number of blue beads, minus 1
s = 0, // s = number of times the target ratio was reached
R = 0, // R = number of red beads, minus 1
h = d => // h = recursive function taking d = 6-sided die value
++d < 7 ? // increment d; if d is less than or equal to 6:
h( // do a recursive call to h:
d, // using the new value of d
[0, d].map(b => // for b = 0 and b = d:
g( // do a first recursive call to g:
n, // leave n unchanged
B / -~!!b, // divide B by 2 if b is not equal to 0
R / -~!b // divide R by 2 if b is equal to 0
) & g( // do a second recursive call to g:
n, // leave n unchanged
B + b, // add b blue beads
R + d - b // add d - b red beads
) // end of recursive calls to g
) // end of map()
) // end of recursive call to h
: // else (d > 6):
s / 24 ** -~n // stop recursion and return s / (24 ** (n + 1))
) => // body of g:
n-- ? // decrement n; if n was not equal to 0:
h`` // invoke h with d = [''] (coerced to 0)
: // else:
s += // increment s if:
~B <= r * ~R | // either (-B-1) <= r*(-R-1), i.e. (B+1)/(R+1) >= r
~R <= r * ~B // or (-R-1) <= r*(-B-1), i.e. (R+1)/(B+1) >= r
$endgroup$
JavaScript (ES7), 145 ... 129 124 123 bytes
Takes input as (r)(n)
. This is a naive solution that actually performs the entire simulation.
r=>g=(n,B=s=0,R=0,h=d=>++d<7?h(d,[0,d].map(b=>g(n,B/-~!!b,R/-~!b)&g(n,B+b,R+d-b))):s/24**-~n)=>n--?h``:s+=~B<=r*~R|~R<=r*~B
Try it online!
Too slow for the last 2 test cases.
Commented
r => // r = target ratio
g = ( // g is a recursive function taking:
n, // n = number of iterations
B = // B = number of blue beads, minus 1
s = 0, // s = number of times the target ratio was reached
R = 0, // R = number of red beads, minus 1
h = d => // h = recursive function taking d = 6-sided die value
++d < 7 ? // increment d; if d is less than or equal to 6:
h( // do a recursive call to h:
d, // using the new value of d
[0, d].map(b => // for b = 0 and b = d:
g( // do a first recursive call to g:
n, // leave n unchanged
B / -~!!b, // divide B by 2 if b is not equal to 0
R / -~!b // divide R by 2 if b is equal to 0
) & g( // do a second recursive call to g:
n, // leave n unchanged
B + b, // add b blue beads
R + d - b // add d - b red beads
) // end of recursive calls to g
) // end of map()
) // end of recursive call to h
: // else (d > 6):
s / 24 ** -~n // stop recursion and return s / (24 ** (n + 1))
) => // body of g:
n-- ? // decrement n; if n was not equal to 0:
h`` // invoke h with d = [''] (coerced to 0)
: // else:
s += // increment s if:
~B <= r * ~R | // either (-B-1) <= r*(-R-1), i.e. (B+1)/(R+1) >= r
~R <= r * ~B // or (-R-1) <= r*(-B-1), i.e. (R+1)/(B+1) >= r
edited 15 hours ago
answered yesterday
ArnauldArnauld
78.8k795327
78.8k795327
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
add a comment |
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
$begingroup$
I really like this answer, I found that in order to solve the later test cases I needed to add code to merge the same ratio probabilities. So I'm not surprised it's too slow
$endgroup$
– Expired Data
yesterday
add a comment |
Expired Data is a new contributor. Be nice, and check out our Code of Conduct.
Expired Data is a new contributor. Be nice, and check out our Code of Conduct.
Expired Data is a new contributor. Be nice, and check out our Code of Conduct.
Expired Data is a new contributor. Be nice, and check out our Code of Conduct.
If this is an answer to a challenge…
…Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.
…Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
Explanations of your answer make it more interesting to read and are very much encouraged.…Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.
More generally…
…Please make sure to answer the question and provide sufficient detail.
…Avoid asking for help, clarification or responding to other answers (use comments instead).
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f181551%2fp%25c3%25b3lya-urn-flip-and-roll%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I feel like there is a formula for this...
$endgroup$
– Embodiment of Ignorance
yesterday
$begingroup$
Something to do with beta binomials maybe, but it might be longer to write that out
$endgroup$
– Expired Data
yesterday
$begingroup$
depends on the language; R and Mathematica might be able to do it efficiently.
$endgroup$
– Giuseppe
yesterday