Combining pure functions containing compound expressions
Background
For display purposes, I sometimes find it desirable to defeat Mathematica's canonical ordering of variables, and instead have it output terms in the order in which I type them. E.g., instead of this:
b-a
v=v0+a t
a8+a9+a10
–a + b
a t + v0
a10 + a8 + a9
...I'd prefer this:
b – a
v0 + a t
a8 + a9 + a10
This can be easily accomplished by removing the Orderless attributes from Plus and Times, entering the expression, and then immediately restoring those attributes (it is important to do the latter, since their absence alters basic functionality; e.g., without Orderless, Plus doesn't recognize that a + b is mathematically identical to b + a).
ClearAttributes[Plus, Orderless]
ClearAttributes[Times, Orderless]
e1=c (b-a)
SetAttributes[Plus, Orderless]
SetAttributes[Times, Orderless]
c (b – a)
Question
How do I implement the above as a function? I.e., I'd like to define a function such that:
e1=func[c (b-a)]
e2=c (b-a) (*confirm that Orderless is restored to both Plus and Times*)
e1==e2 (*check that functionality isn't affected by how function is displayed; want output to be "True"*)
c (b – a)
(–a + b) c
True
EDIT: Note that I want to alter only the display format, not any other functionality. E.g., MMA should still recognize that e1 and e2 are mathematically equivalent, even though e1 was defined while the Orderless Attribute was absent from both Plus and Times.
Thus far I've only managed the following, which achieves the desired output, but requires I enter a function, then the expression, then another function:
func1 := (ClearAttributes[Plus, Orderless]; ClearAttributes[Times, Orderless]) &;
func2 := (SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]) &;
func1[_]
e1=c (b-a)
func2[_]
e2=c (b-a)
e1==e2
c (b – a)
(–a + b) c
True
So how do I combine the above into a single function that takes the expression as its argument? Or, to put it another way, how do I turn the following pseudocode into working MMA syntax?:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless]; #;
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless]) &;
func[c (b-a)]
(no output)
The above function gives no output because pure functions, by default, only return the result of the last statement. I could get output by moving # to the end, as follows, but that just causes it to return the argument with standard canonical ordering, since here # is evaluated after the Orderless Attributes are restored:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless];#) &;
func[c (b-a)]
(-a+b) c
Granted, one workaround might be to use a DownValues construction for the last statement, since that could step backwards and get # in its earlier (non-canonical) format, and output it. But it would be much more straightforward if I could just tell the function to output whatever intermediate result I wished.
Finally, if I abandon pure functions, I could do this, but it doesn't fully work because the output of Print is Null:
SetAttributes[f, HoldAll]
f[expr_] :=
Module[{}, ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
Print[expr];
SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]]
e1 = f[c (b - a)]
e2 = c (b - a)
e1 == e2
c (b-a)
(-a + b) c
Null == (-a + b) c
So it would be nice if there were a simple way to get a function (both pure and otherwise) comprising a compound expression to return an assignable non-Null intermediate result (without exiting, which is what Return would do), which is something I could apply to other problems as well. I.e., I sometimes need MMA to 'do X, then do Y and return the result, then do Z', so seeing how it's done for this application would serve as a template that I could use elsewhere. I found this thread: Compound Statements and returning earlier results in () parentheses, but wasn't able to apply it to my problem.
function-construction output-formatting sorting output pure-function
add a comment |
Background
For display purposes, I sometimes find it desirable to defeat Mathematica's canonical ordering of variables, and instead have it output terms in the order in which I type them. E.g., instead of this:
b-a
v=v0+a t
a8+a9+a10
–a + b
a t + v0
a10 + a8 + a9
...I'd prefer this:
b – a
v0 + a t
a8 + a9 + a10
This can be easily accomplished by removing the Orderless attributes from Plus and Times, entering the expression, and then immediately restoring those attributes (it is important to do the latter, since their absence alters basic functionality; e.g., without Orderless, Plus doesn't recognize that a + b is mathematically identical to b + a).
ClearAttributes[Plus, Orderless]
ClearAttributes[Times, Orderless]
e1=c (b-a)
SetAttributes[Plus, Orderless]
SetAttributes[Times, Orderless]
c (b – a)
Question
How do I implement the above as a function? I.e., I'd like to define a function such that:
e1=func[c (b-a)]
e2=c (b-a) (*confirm that Orderless is restored to both Plus and Times*)
e1==e2 (*check that functionality isn't affected by how function is displayed; want output to be "True"*)
c (b – a)
(–a + b) c
True
EDIT: Note that I want to alter only the display format, not any other functionality. E.g., MMA should still recognize that e1 and e2 are mathematically equivalent, even though e1 was defined while the Orderless Attribute was absent from both Plus and Times.
Thus far I've only managed the following, which achieves the desired output, but requires I enter a function, then the expression, then another function:
func1 := (ClearAttributes[Plus, Orderless]; ClearAttributes[Times, Orderless]) &;
func2 := (SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]) &;
func1[_]
e1=c (b-a)
func2[_]
e2=c (b-a)
e1==e2
c (b – a)
(–a + b) c
True
So how do I combine the above into a single function that takes the expression as its argument? Or, to put it another way, how do I turn the following pseudocode into working MMA syntax?:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless]; #;
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless]) &;
func[c (b-a)]
(no output)
The above function gives no output because pure functions, by default, only return the result of the last statement. I could get output by moving # to the end, as follows, but that just causes it to return the argument with standard canonical ordering, since here # is evaluated after the Orderless Attributes are restored:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless];#) &;
func[c (b-a)]
(-a+b) c
Granted, one workaround might be to use a DownValues construction for the last statement, since that could step backwards and get # in its earlier (non-canonical) format, and output it. But it would be much more straightforward if I could just tell the function to output whatever intermediate result I wished.
Finally, if I abandon pure functions, I could do this, but it doesn't fully work because the output of Print is Null:
SetAttributes[f, HoldAll]
f[expr_] :=
Module[{}, ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
Print[expr];
SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]]
e1 = f[c (b - a)]
e2 = c (b - a)
e1 == e2
c (b-a)
(-a + b) c
Null == (-a + b) c
So it would be nice if there were a simple way to get a function (both pure and otherwise) comprising a compound expression to return an assignable non-Null intermediate result (without exiting, which is what Return would do), which is something I could apply to other problems as well. I.e., I sometimes need MMA to 'do X, then do Y and return the result, then do Z', so seeing how it's done for this application would serve as a template that I could use elsewhere. I found this thread: Compound Statements and returning earlier results in () parentheses, but wasn't able to apply it to my problem.
function-construction output-formatting sorting output pure-function
add a comment |
Background
For display purposes, I sometimes find it desirable to defeat Mathematica's canonical ordering of variables, and instead have it output terms in the order in which I type them. E.g., instead of this:
b-a
v=v0+a t
a8+a9+a10
–a + b
a t + v0
a10 + a8 + a9
...I'd prefer this:
b – a
v0 + a t
a8 + a9 + a10
This can be easily accomplished by removing the Orderless attributes from Plus and Times, entering the expression, and then immediately restoring those attributes (it is important to do the latter, since their absence alters basic functionality; e.g., without Orderless, Plus doesn't recognize that a + b is mathematically identical to b + a).
ClearAttributes[Plus, Orderless]
ClearAttributes[Times, Orderless]
e1=c (b-a)
SetAttributes[Plus, Orderless]
SetAttributes[Times, Orderless]
c (b – a)
Question
How do I implement the above as a function? I.e., I'd like to define a function such that:
e1=func[c (b-a)]
e2=c (b-a) (*confirm that Orderless is restored to both Plus and Times*)
e1==e2 (*check that functionality isn't affected by how function is displayed; want output to be "True"*)
c (b – a)
(–a + b) c
True
EDIT: Note that I want to alter only the display format, not any other functionality. E.g., MMA should still recognize that e1 and e2 are mathematically equivalent, even though e1 was defined while the Orderless Attribute was absent from both Plus and Times.
Thus far I've only managed the following, which achieves the desired output, but requires I enter a function, then the expression, then another function:
func1 := (ClearAttributes[Plus, Orderless]; ClearAttributes[Times, Orderless]) &;
func2 := (SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]) &;
func1[_]
e1=c (b-a)
func2[_]
e2=c (b-a)
e1==e2
c (b – a)
(–a + b) c
True
So how do I combine the above into a single function that takes the expression as its argument? Or, to put it another way, how do I turn the following pseudocode into working MMA syntax?:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless]; #;
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless]) &;
func[c (b-a)]
(no output)
The above function gives no output because pure functions, by default, only return the result of the last statement. I could get output by moving # to the end, as follows, but that just causes it to return the argument with standard canonical ordering, since here # is evaluated after the Orderless Attributes are restored:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless];#) &;
func[c (b-a)]
(-a+b) c
Granted, one workaround might be to use a DownValues construction for the last statement, since that could step backwards and get # in its earlier (non-canonical) format, and output it. But it would be much more straightforward if I could just tell the function to output whatever intermediate result I wished.
Finally, if I abandon pure functions, I could do this, but it doesn't fully work because the output of Print is Null:
SetAttributes[f, HoldAll]
f[expr_] :=
Module[{}, ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
Print[expr];
SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]]
e1 = f[c (b - a)]
e2 = c (b - a)
e1 == e2
c (b-a)
(-a + b) c
Null == (-a + b) c
So it would be nice if there were a simple way to get a function (both pure and otherwise) comprising a compound expression to return an assignable non-Null intermediate result (without exiting, which is what Return would do), which is something I could apply to other problems as well. I.e., I sometimes need MMA to 'do X, then do Y and return the result, then do Z', so seeing how it's done for this application would serve as a template that I could use elsewhere. I found this thread: Compound Statements and returning earlier results in () parentheses, but wasn't able to apply it to my problem.
function-construction output-formatting sorting output pure-function
Background
For display purposes, I sometimes find it desirable to defeat Mathematica's canonical ordering of variables, and instead have it output terms in the order in which I type them. E.g., instead of this:
b-a
v=v0+a t
a8+a9+a10
–a + b
a t + v0
a10 + a8 + a9
...I'd prefer this:
b – a
v0 + a t
a8 + a9 + a10
This can be easily accomplished by removing the Orderless attributes from Plus and Times, entering the expression, and then immediately restoring those attributes (it is important to do the latter, since their absence alters basic functionality; e.g., without Orderless, Plus doesn't recognize that a + b is mathematically identical to b + a).
ClearAttributes[Plus, Orderless]
ClearAttributes[Times, Orderless]
e1=c (b-a)
SetAttributes[Plus, Orderless]
SetAttributes[Times, Orderless]
c (b – a)
Question
How do I implement the above as a function? I.e., I'd like to define a function such that:
e1=func[c (b-a)]
e2=c (b-a) (*confirm that Orderless is restored to both Plus and Times*)
e1==e2 (*check that functionality isn't affected by how function is displayed; want output to be "True"*)
c (b – a)
(–a + b) c
True
EDIT: Note that I want to alter only the display format, not any other functionality. E.g., MMA should still recognize that e1 and e2 are mathematically equivalent, even though e1 was defined while the Orderless Attribute was absent from both Plus and Times.
Thus far I've only managed the following, which achieves the desired output, but requires I enter a function, then the expression, then another function:
func1 := (ClearAttributes[Plus, Orderless]; ClearAttributes[Times, Orderless]) &;
func2 := (SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]) &;
func1[_]
e1=c (b-a)
func2[_]
e2=c (b-a)
e1==e2
c (b – a)
(–a + b) c
True
So how do I combine the above into a single function that takes the expression as its argument? Or, to put it another way, how do I turn the following pseudocode into working MMA syntax?:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless]; #;
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless]) &;
func[c (b-a)]
(no output)
The above function gives no output because pure functions, by default, only return the result of the last statement. I could get output by moving # to the end, as follows, but that just causes it to return the argument with standard canonical ordering, since here # is evaluated after the Orderless Attributes are restored:
func := (ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
SetAttributes[Plus, Orderless];
SetAttributes[Times, Orderless];#) &;
func[c (b-a)]
(-a+b) c
Granted, one workaround might be to use a DownValues construction for the last statement, since that could step backwards and get # in its earlier (non-canonical) format, and output it. But it would be much more straightforward if I could just tell the function to output whatever intermediate result I wished.
Finally, if I abandon pure functions, I could do this, but it doesn't fully work because the output of Print is Null:
SetAttributes[f, HoldAll]
f[expr_] :=
Module[{}, ClearAttributes[Plus, Orderless];
ClearAttributes[Times, Orderless];
Print[expr];
SetAttributes[Plus, Orderless]; SetAttributes[Times, Orderless]]
e1 = f[c (b - a)]
e2 = c (b - a)
e1 == e2
c (b-a)
(-a + b) c
Null == (-a + b) c
So it would be nice if there were a simple way to get a function (both pure and otherwise) comprising a compound expression to return an assignable non-Null intermediate result (without exiting, which is what Return would do), which is something I could apply to other problems as well. I.e., I sometimes need MMA to 'do X, then do Y and return the result, then do Z', so seeing how it's done for this application would serve as a template that I could use elsewhere. I found this thread: Compound Statements and returning earlier results in () parentheses, but wasn't able to apply it to my problem.
function-construction output-formatting sorting output pure-function
function-construction output-formatting sorting output pure-function
edited 9 hours ago
asked Dec 30 '18 at 1:55
theorist
1,082420
1,082420
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You could define a format that does this for you:
SetAttributes[orderlessForm, HoldFirst]
MakeBoxes[orderlessForm[expr_], form_] ^:= Internal`InheritedBlock[{Times, Plus},
ClearAttributes[{Times, Plus}, Orderless];
MakeBoxes[expr, form]
]
Then:
orderlessForm[c (b - a)]
c (b - a)
And, the usual output when not using the wrapper:
c (b - a)
(-a + b) c
Note that the HoldFirst
attribute does most of the work.
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
givesa + b == b + a
instead ofTrue
. I've added an edit at the end of my question to make this requirement explicit.
– theorist
2 days ago
@theorist look at theFullForm
for what you see there and then see you can add anUpValue
toorderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just useFirst
first?
– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): addUpValue
: Sorry, I don't understand where you wish to add that or what you mean by makingorderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when usingorderlessForm
will behave normally. (3) UseFirst
first: Sorry, don't know what you mean here.
– theorist
2 days ago
@theorist you define anUpValue
that handles working withPlus
or you useorderlessForm
only as a display form—e.g. useFirst
to strip it before doing any operations.
– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
|
show 5 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188576%2fcombining-pure-functions-containing-compound-expressions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You could define a format that does this for you:
SetAttributes[orderlessForm, HoldFirst]
MakeBoxes[orderlessForm[expr_], form_] ^:= Internal`InheritedBlock[{Times, Plus},
ClearAttributes[{Times, Plus}, Orderless];
MakeBoxes[expr, form]
]
Then:
orderlessForm[c (b - a)]
c (b - a)
And, the usual output when not using the wrapper:
c (b - a)
(-a + b) c
Note that the HoldFirst
attribute does most of the work.
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
givesa + b == b + a
instead ofTrue
. I've added an edit at the end of my question to make this requirement explicit.
– theorist
2 days ago
@theorist look at theFullForm
for what you see there and then see you can add anUpValue
toorderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just useFirst
first?
– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): addUpValue
: Sorry, I don't understand where you wish to add that or what you mean by makingorderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when usingorderlessForm
will behave normally. (3) UseFirst
first: Sorry, don't know what you mean here.
– theorist
2 days ago
@theorist you define anUpValue
that handles working withPlus
or you useorderlessForm
only as a display form—e.g. useFirst
to strip it before doing any operations.
– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
|
show 5 more comments
You could define a format that does this for you:
SetAttributes[orderlessForm, HoldFirst]
MakeBoxes[orderlessForm[expr_], form_] ^:= Internal`InheritedBlock[{Times, Plus},
ClearAttributes[{Times, Plus}, Orderless];
MakeBoxes[expr, form]
]
Then:
orderlessForm[c (b - a)]
c (b - a)
And, the usual output when not using the wrapper:
c (b - a)
(-a + b) c
Note that the HoldFirst
attribute does most of the work.
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
givesa + b == b + a
instead ofTrue
. I've added an edit at the end of my question to make this requirement explicit.
– theorist
2 days ago
@theorist look at theFullForm
for what you see there and then see you can add anUpValue
toorderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just useFirst
first?
– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): addUpValue
: Sorry, I don't understand where you wish to add that or what you mean by makingorderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when usingorderlessForm
will behave normally. (3) UseFirst
first: Sorry, don't know what you mean here.
– theorist
2 days ago
@theorist you define anUpValue
that handles working withPlus
or you useorderlessForm
only as a display form—e.g. useFirst
to strip it before doing any operations.
– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
|
show 5 more comments
You could define a format that does this for you:
SetAttributes[orderlessForm, HoldFirst]
MakeBoxes[orderlessForm[expr_], form_] ^:= Internal`InheritedBlock[{Times, Plus},
ClearAttributes[{Times, Plus}, Orderless];
MakeBoxes[expr, form]
]
Then:
orderlessForm[c (b - a)]
c (b - a)
And, the usual output when not using the wrapper:
c (b - a)
(-a + b) c
Note that the HoldFirst
attribute does most of the work.
You could define a format that does this for you:
SetAttributes[orderlessForm, HoldFirst]
MakeBoxes[orderlessForm[expr_], form_] ^:= Internal`InheritedBlock[{Times, Plus},
ClearAttributes[{Times, Plus}, Orderless];
MakeBoxes[expr, form]
]
Then:
orderlessForm[c (b - a)]
c (b - a)
And, the usual output when not using the wrapper:
c (b - a)
(-a + b) c
Note that the HoldFirst
attribute does most of the work.
answered Dec 30 '18 at 3:33
Carl Woll
67.1k388175
67.1k388175
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
givesa + b == b + a
instead ofTrue
. I've added an edit at the end of my question to make this requirement explicit.
– theorist
2 days ago
@theorist look at theFullForm
for what you see there and then see you can add anUpValue
toorderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just useFirst
first?
– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): addUpValue
: Sorry, I don't understand where you wish to add that or what you mean by makingorderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when usingorderlessForm
will behave normally. (3) UseFirst
first: Sorry, don't know what you mean here.
– theorist
2 days ago
@theorist you define anUpValue
that handles working withPlus
or you useorderlessForm
only as a display form—e.g. useFirst
to strip it before doing any operations.
– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
|
show 5 more comments
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
givesa + b == b + a
instead ofTrue
. I've added an edit at the end of my question to make this requirement explicit.
– theorist
2 days ago
@theorist look at theFullForm
for what you see there and then see you can add anUpValue
toorderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just useFirst
first?
– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): addUpValue
: Sorry, I don't understand where you wish to add that or what you mean by makingorderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when usingorderlessForm
will behave normally. (3) UseFirst
first: Sorry, don't know what you mean here.
– theorist
2 days ago
@theorist you define anUpValue
that handles working withPlus
or you useorderlessForm
only as a display form—e.g. useFirst
to strip it before doing any operations.
– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,
e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
gives a + b == b + a
instead of True
. I've added an edit at the end of my question to make this requirement explicit.– theorist
2 days ago
Thanks Carl. One problem I notice is that orderlessForm alters some functionality. E.g.,
e1 = orderlessForm[a + b];
e2 = orderlessForm[b + a];
e1 == e2
gives a + b == b + a
instead of True
. I've added an edit at the end of my question to make this requirement explicit.– theorist
2 days ago
@theorist look at the
FullForm
for what you see there and then see you can add an UpValue
to orderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just use First
first?– b3m2a1
2 days ago
@theorist look at the
FullForm
for what you see there and then see you can add an UpValue
to orderedForm
to make it disappear when used in any computation like this. But in general why do you need that requirement? Why can’t you just use First
first?– b3m2a1
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): add
UpValue
: Sorry, I don't understand where you wish to add that or what you mean by making orderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when using orderlessForm
will behave normally. (3) Use First
first: Sorry, don't know what you mean here.– theorist
2 days ago
@b3m2a1 Let me address each of your points in turn. (1): add
UpValue
: Sorry, I don't understand where you wish to add that or what you mean by making orderedForm
disappear. (2) Need for requirement: I thought I explained that at the end of my OP—I need expressions I define when using orderlessForm
will behave normally. (3) Use First
first: Sorry, don't know what you mean here.– theorist
2 days ago
@theorist you define an
UpValue
that handles working with Plus
or you use orderlessForm
only as a display form—e.g. use First
to strip it before doing any operations.– b3m2a1
2 days ago
@theorist you define an
UpValue
that handles working with Plus
or you use orderlessForm
only as a display form—e.g. use First
to strip it before doing any operations.– b3m2a1
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
@b3m2a1 Sorry, still don't understand; I'd need to see the actual code.
– theorist
2 days ago
|
show 5 more comments
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f188576%2fcombining-pure-functions-containing-compound-expressions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown