Obstructions to realisation of dual finite spectra as suspension spectra
up vote
5
down vote
favorite
Suppose $X$ is a finite dimensional CW-complex with top cell at dimmension $n$ and consider its S-dual denoted by $DX$. I wonder if there are any obstructions to find a space $Y$ and an interger $kgeqslant n$ so that
$$Sigma^kD(X)simeqSigma^infty Y_+ ?$$
For example, in the case of $X=S^m$ the answer is positive.
EDIT In the case of finite dimensional projective spaces, one may start from spaces $mathbb{R}P_m^n$ and choosing $m$ and $n$ in accordance with James periodicity, we can actually compute such a $k$.
The question is that is there any such $k$ for a given CW-complex of finite type (which of course after Neil's answer below I realise the answer is positive if one is to choose $k$ enough large, and obstructions are for specific $k$'s)
I would be very grateful for any references.
at.algebraic-topology
add a comment |
up vote
5
down vote
favorite
Suppose $X$ is a finite dimensional CW-complex with top cell at dimmension $n$ and consider its S-dual denoted by $DX$. I wonder if there are any obstructions to find a space $Y$ and an interger $kgeqslant n$ so that
$$Sigma^kD(X)simeqSigma^infty Y_+ ?$$
For example, in the case of $X=S^m$ the answer is positive.
EDIT In the case of finite dimensional projective spaces, one may start from spaces $mathbb{R}P_m^n$ and choosing $m$ and $n$ in accordance with James periodicity, we can actually compute such a $k$.
The question is that is there any such $k$ for a given CW-complex of finite type (which of course after Neil's answer below I realise the answer is positive if one is to choose $k$ enough large, and obstructions are for specific $k$'s)
I would be very grateful for any references.
at.algebraic-topology
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Suppose $X$ is a finite dimensional CW-complex with top cell at dimmension $n$ and consider its S-dual denoted by $DX$. I wonder if there are any obstructions to find a space $Y$ and an interger $kgeqslant n$ so that
$$Sigma^kD(X)simeqSigma^infty Y_+ ?$$
For example, in the case of $X=S^m$ the answer is positive.
EDIT In the case of finite dimensional projective spaces, one may start from spaces $mathbb{R}P_m^n$ and choosing $m$ and $n$ in accordance with James periodicity, we can actually compute such a $k$.
The question is that is there any such $k$ for a given CW-complex of finite type (which of course after Neil's answer below I realise the answer is positive if one is to choose $k$ enough large, and obstructions are for specific $k$'s)
I would be very grateful for any references.
at.algebraic-topology
Suppose $X$ is a finite dimensional CW-complex with top cell at dimmension $n$ and consider its S-dual denoted by $DX$. I wonder if there are any obstructions to find a space $Y$ and an interger $kgeqslant n$ so that
$$Sigma^kD(X)simeqSigma^infty Y_+ ?$$
For example, in the case of $X=S^m$ the answer is positive.
EDIT In the case of finite dimensional projective spaces, one may start from spaces $mathbb{R}P_m^n$ and choosing $m$ and $n$ in accordance with James periodicity, we can actually compute such a $k$.
The question is that is there any such $k$ for a given CW-complex of finite type (which of course after Neil's answer below I realise the answer is positive if one is to choose $k$ enough large, and obstructions are for specific $k$'s)
I would be very grateful for any references.
at.algebraic-topology
at.algebraic-topology
edited 2 days ago
asked 2 days ago
user51223
1,331617
1,331617
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
8
down vote
accepted
Firstly, you say that the answer is negative for finite-dimensional projective spaces. However, in this case, and for any finite complex $X$, the answer will be positive if we take $k$ sufficiently large. Perhaps you are just thinking of the case $k=n$? Anyway, I will assume that we have fixed some particular $kgeq n$ and we want to know whether $Sigma^kDX$ is a suspension spectrum.
The most obvious point is that $H^*(Sigma^kD(X);mathbb{F}_p)$ needs to be an unstable module over the Steenrod algebra. This is easy to check if you have a good understanding of $H^*(X;mathbb{F}_p)$ as a Steenrod module. Similarly, the module $M=K^0(Sigma^kDX)$ has naturally defined Adams operations $psi^qcolon Mto M[q^{-1}]$, and if $Sigma^kDX$ is a suspension spectrum then these will lift in a compatible way to give operations $psi^qcolon M to M$. If this does not settle the question then one can consider additive unstable operations in $BP$ theory or $MU$ theory. These are harder to handle explicitly but the basic slogan is as follows: $MU^*(Sigma^kDX)$ is functorial for isomorphisms of formal groups, and if $Sigma^kDX$ is a suspension spectrum then this extends to give functoriality for all homomorphisms of formal groups.
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
Firstly, you say that the answer is negative for finite-dimensional projective spaces. However, in this case, and for any finite complex $X$, the answer will be positive if we take $k$ sufficiently large. Perhaps you are just thinking of the case $k=n$? Anyway, I will assume that we have fixed some particular $kgeq n$ and we want to know whether $Sigma^kDX$ is a suspension spectrum.
The most obvious point is that $H^*(Sigma^kD(X);mathbb{F}_p)$ needs to be an unstable module over the Steenrod algebra. This is easy to check if you have a good understanding of $H^*(X;mathbb{F}_p)$ as a Steenrod module. Similarly, the module $M=K^0(Sigma^kDX)$ has naturally defined Adams operations $psi^qcolon Mto M[q^{-1}]$, and if $Sigma^kDX$ is a suspension spectrum then these will lift in a compatible way to give operations $psi^qcolon M to M$. If this does not settle the question then one can consider additive unstable operations in $BP$ theory or $MU$ theory. These are harder to handle explicitly but the basic slogan is as follows: $MU^*(Sigma^kDX)$ is functorial for isomorphisms of formal groups, and if $Sigma^kDX$ is a suspension spectrum then this extends to give functoriality for all homomorphisms of formal groups.
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
add a comment |
up vote
8
down vote
accepted
Firstly, you say that the answer is negative for finite-dimensional projective spaces. However, in this case, and for any finite complex $X$, the answer will be positive if we take $k$ sufficiently large. Perhaps you are just thinking of the case $k=n$? Anyway, I will assume that we have fixed some particular $kgeq n$ and we want to know whether $Sigma^kDX$ is a suspension spectrum.
The most obvious point is that $H^*(Sigma^kD(X);mathbb{F}_p)$ needs to be an unstable module over the Steenrod algebra. This is easy to check if you have a good understanding of $H^*(X;mathbb{F}_p)$ as a Steenrod module. Similarly, the module $M=K^0(Sigma^kDX)$ has naturally defined Adams operations $psi^qcolon Mto M[q^{-1}]$, and if $Sigma^kDX$ is a suspension spectrum then these will lift in a compatible way to give operations $psi^qcolon M to M$. If this does not settle the question then one can consider additive unstable operations in $BP$ theory or $MU$ theory. These are harder to handle explicitly but the basic slogan is as follows: $MU^*(Sigma^kDX)$ is functorial for isomorphisms of formal groups, and if $Sigma^kDX$ is a suspension spectrum then this extends to give functoriality for all homomorphisms of formal groups.
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
add a comment |
up vote
8
down vote
accepted
up vote
8
down vote
accepted
Firstly, you say that the answer is negative for finite-dimensional projective spaces. However, in this case, and for any finite complex $X$, the answer will be positive if we take $k$ sufficiently large. Perhaps you are just thinking of the case $k=n$? Anyway, I will assume that we have fixed some particular $kgeq n$ and we want to know whether $Sigma^kDX$ is a suspension spectrum.
The most obvious point is that $H^*(Sigma^kD(X);mathbb{F}_p)$ needs to be an unstable module over the Steenrod algebra. This is easy to check if you have a good understanding of $H^*(X;mathbb{F}_p)$ as a Steenrod module. Similarly, the module $M=K^0(Sigma^kDX)$ has naturally defined Adams operations $psi^qcolon Mto M[q^{-1}]$, and if $Sigma^kDX$ is a suspension spectrum then these will lift in a compatible way to give operations $psi^qcolon M to M$. If this does not settle the question then one can consider additive unstable operations in $BP$ theory or $MU$ theory. These are harder to handle explicitly but the basic slogan is as follows: $MU^*(Sigma^kDX)$ is functorial for isomorphisms of formal groups, and if $Sigma^kDX$ is a suspension spectrum then this extends to give functoriality for all homomorphisms of formal groups.
Firstly, you say that the answer is negative for finite-dimensional projective spaces. However, in this case, and for any finite complex $X$, the answer will be positive if we take $k$ sufficiently large. Perhaps you are just thinking of the case $k=n$? Anyway, I will assume that we have fixed some particular $kgeq n$ and we want to know whether $Sigma^kDX$ is a suspension spectrum.
The most obvious point is that $H^*(Sigma^kD(X);mathbb{F}_p)$ needs to be an unstable module over the Steenrod algebra. This is easy to check if you have a good understanding of $H^*(X;mathbb{F}_p)$ as a Steenrod module. Similarly, the module $M=K^0(Sigma^kDX)$ has naturally defined Adams operations $psi^qcolon Mto M[q^{-1}]$, and if $Sigma^kDX$ is a suspension spectrum then these will lift in a compatible way to give operations $psi^qcolon M to M$. If this does not settle the question then one can consider additive unstable operations in $BP$ theory or $MU$ theory. These are harder to handle explicitly but the basic slogan is as follows: $MU^*(Sigma^kDX)$ is functorial for isomorphisms of formal groups, and if $Sigma^kDX$ is a suspension spectrum then this extends to give functoriality for all homomorphisms of formal groups.
answered 2 days ago
Neil Strickland
35.9k692185
35.9k692185
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
add a comment |
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
Thanks for correcting me on my statement about projective spaces for your comments on the general case. I will edit the statement about the projective spaces.
– user51223
2 days ago
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f316221%2fobstructions-to-realisation-of-dual-finite-spectra-as-suspension-spectra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown