How can I convert a pandas series that contains an array of json dictionaries into a dataframe?
I have a series composed of the following:
[
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:
]
Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?
pandas
add a comment |
I have a series composed of the following:
[
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:
]
Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?
pandas
add a comment |
I have a series composed of the following:
[
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:
]
Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?
pandas
I have a series composed of the following:
[
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:
[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:
]
Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?
pandas
pandas
edited Nov 19 at 23:03
asked Nov 19 at 22:35
Drew Pham
12
12
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
If your dataframe looks like this:
>>> df
column
0 [{'work_location': 'correctly_parsed', 'work_c...
Then you can do:
>>> pd.DataFrame(df['column'][0])
work_company work_dates work_description work_experience_item
0 correctly_parsed correctly_parsed correctly_parsed 1.0
1 correctly_parsed correctly_parsed correctly_parsed 2.0
2 correctly_parsed NaN correctly_parsed NaN
work_location work_title
0 correctly_parsed correctly_parsed
1 correctly_parsed correctly_parsed
2 not_on_source NaN
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53383639%2fhow-can-i-convert-a-pandas-series-that-contains-an-array-of-json-dictionaries-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
If your dataframe looks like this:
>>> df
column
0 [{'work_location': 'correctly_parsed', 'work_c...
Then you can do:
>>> pd.DataFrame(df['column'][0])
work_company work_dates work_description work_experience_item
0 correctly_parsed correctly_parsed correctly_parsed 1.0
1 correctly_parsed correctly_parsed correctly_parsed 2.0
2 correctly_parsed NaN correctly_parsed NaN
work_location work_title
0 correctly_parsed correctly_parsed
1 correctly_parsed correctly_parsed
2 not_on_source NaN
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
add a comment |
If your dataframe looks like this:
>>> df
column
0 [{'work_location': 'correctly_parsed', 'work_c...
Then you can do:
>>> pd.DataFrame(df['column'][0])
work_company work_dates work_description work_experience_item
0 correctly_parsed correctly_parsed correctly_parsed 1.0
1 correctly_parsed correctly_parsed correctly_parsed 2.0
2 correctly_parsed NaN correctly_parsed NaN
work_location work_title
0 correctly_parsed correctly_parsed
1 correctly_parsed correctly_parsed
2 not_on_source NaN
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
add a comment |
If your dataframe looks like this:
>>> df
column
0 [{'work_location': 'correctly_parsed', 'work_c...
Then you can do:
>>> pd.DataFrame(df['column'][0])
work_company work_dates work_description work_experience_item
0 correctly_parsed correctly_parsed correctly_parsed 1.0
1 correctly_parsed correctly_parsed correctly_parsed 2.0
2 correctly_parsed NaN correctly_parsed NaN
work_location work_title
0 correctly_parsed correctly_parsed
1 correctly_parsed correctly_parsed
2 not_on_source NaN
If your dataframe looks like this:
>>> df
column
0 [{'work_location': 'correctly_parsed', 'work_c...
Then you can do:
>>> pd.DataFrame(df['column'][0])
work_company work_dates work_description work_experience_item
0 correctly_parsed correctly_parsed correctly_parsed 1.0
1 correctly_parsed correctly_parsed correctly_parsed 2.0
2 correctly_parsed NaN correctly_parsed NaN
work_location work_title
0 correctly_parsed correctly_parsed
1 correctly_parsed correctly_parsed
2 not_on_source NaN
answered Nov 19 at 22:39
sacul
29.9k41740
29.9k41740
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
add a comment |
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
the issue is that i want all the rows to be actually 1 row for
– Drew Pham
Nov 19 at 22:45
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
Sorry, I don't understand. Could you post your expected output as an edit to your question?
– sacul
Nov 19 at 22:49
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53383639%2fhow-can-i-convert-a-pandas-series-that-contains-an-array-of-json-dictionaries-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown