How can I convert a pandas series that contains an array of json dictionaries into a dataframe?












0














I have a series composed of the following:



[



[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:



[{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:



]



Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?










share|improve this question





























    0














    I have a series composed of the following:



    [



    [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:



    [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:



    ]



    Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?










    share|improve this question



























      0












      0








      0


      1





      I have a series composed of the following:



      [



      [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:



      [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:



      ]



      Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?










      share|improve this question















      I have a series composed of the following:



      [



      [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}, {u'edu_location': u'not_on_source', u'edu_dates': u'not_on_source', u'edu_title': u'missing', u'edu_item': 2, u'edu_school': u'correctly_parsed'}], :SHOULD BE ITS OWN ROW:



      [{u'edu_location': u'correctly_parsed', u'edu_dates': u'correctly_parsed', u'edu_title': u'missing', u'edu_item': 1, u'edu_school': u'correctly_parsed'}] :SHOULD BE ITS OWN ROW:



      ]



      Whats the best way of turning this pandas series into its own df and dynamically renaming the columns with the correspond u'edu_item' value so that they are displayed on one row rather than multiple rows?







      pandas






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 19 at 23:03

























      asked Nov 19 at 22:35









      Drew Pham

      12




      12
























          1 Answer
          1






          active

          oldest

          votes


















          1














          If your dataframe looks like this:



          >>> df
          column
          0 [{'work_location': 'correctly_parsed', 'work_c...


          Then you can do:



          >>> pd.DataFrame(df['column'][0])
          work_company work_dates work_description work_experience_item
          0 correctly_parsed correctly_parsed correctly_parsed 1.0
          1 correctly_parsed correctly_parsed correctly_parsed 2.0
          2 correctly_parsed NaN correctly_parsed NaN

          work_location work_title
          0 correctly_parsed correctly_parsed
          1 correctly_parsed correctly_parsed
          2 not_on_source NaN





          share|improve this answer





















          • the issue is that i want all the rows to be actually 1 row for
            – Drew Pham
            Nov 19 at 22:45










          • Sorry, I don't understand. Could you post your expected output as an edit to your question?
            – sacul
            Nov 19 at 22:49











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53383639%2fhow-can-i-convert-a-pandas-series-that-contains-an-array-of-json-dictionaries-in%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          If your dataframe looks like this:



          >>> df
          column
          0 [{'work_location': 'correctly_parsed', 'work_c...


          Then you can do:



          >>> pd.DataFrame(df['column'][0])
          work_company work_dates work_description work_experience_item
          0 correctly_parsed correctly_parsed correctly_parsed 1.0
          1 correctly_parsed correctly_parsed correctly_parsed 2.0
          2 correctly_parsed NaN correctly_parsed NaN

          work_location work_title
          0 correctly_parsed correctly_parsed
          1 correctly_parsed correctly_parsed
          2 not_on_source NaN





          share|improve this answer





















          • the issue is that i want all the rows to be actually 1 row for
            – Drew Pham
            Nov 19 at 22:45










          • Sorry, I don't understand. Could you post your expected output as an edit to your question?
            – sacul
            Nov 19 at 22:49
















          1














          If your dataframe looks like this:



          >>> df
          column
          0 [{'work_location': 'correctly_parsed', 'work_c...


          Then you can do:



          >>> pd.DataFrame(df['column'][0])
          work_company work_dates work_description work_experience_item
          0 correctly_parsed correctly_parsed correctly_parsed 1.0
          1 correctly_parsed correctly_parsed correctly_parsed 2.0
          2 correctly_parsed NaN correctly_parsed NaN

          work_location work_title
          0 correctly_parsed correctly_parsed
          1 correctly_parsed correctly_parsed
          2 not_on_source NaN





          share|improve this answer





















          • the issue is that i want all the rows to be actually 1 row for
            – Drew Pham
            Nov 19 at 22:45










          • Sorry, I don't understand. Could you post your expected output as an edit to your question?
            – sacul
            Nov 19 at 22:49














          1












          1








          1






          If your dataframe looks like this:



          >>> df
          column
          0 [{'work_location': 'correctly_parsed', 'work_c...


          Then you can do:



          >>> pd.DataFrame(df['column'][0])
          work_company work_dates work_description work_experience_item
          0 correctly_parsed correctly_parsed correctly_parsed 1.0
          1 correctly_parsed correctly_parsed correctly_parsed 2.0
          2 correctly_parsed NaN correctly_parsed NaN

          work_location work_title
          0 correctly_parsed correctly_parsed
          1 correctly_parsed correctly_parsed
          2 not_on_source NaN





          share|improve this answer












          If your dataframe looks like this:



          >>> df
          column
          0 [{'work_location': 'correctly_parsed', 'work_c...


          Then you can do:



          >>> pd.DataFrame(df['column'][0])
          work_company work_dates work_description work_experience_item
          0 correctly_parsed correctly_parsed correctly_parsed 1.0
          1 correctly_parsed correctly_parsed correctly_parsed 2.0
          2 correctly_parsed NaN correctly_parsed NaN

          work_location work_title
          0 correctly_parsed correctly_parsed
          1 correctly_parsed correctly_parsed
          2 not_on_source NaN






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 19 at 22:39









          sacul

          29.9k41740




          29.9k41740












          • the issue is that i want all the rows to be actually 1 row for
            – Drew Pham
            Nov 19 at 22:45










          • Sorry, I don't understand. Could you post your expected output as an edit to your question?
            – sacul
            Nov 19 at 22:49


















          • the issue is that i want all the rows to be actually 1 row for
            – Drew Pham
            Nov 19 at 22:45










          • Sorry, I don't understand. Could you post your expected output as an edit to your question?
            – sacul
            Nov 19 at 22:49
















          the issue is that i want all the rows to be actually 1 row for
          – Drew Pham
          Nov 19 at 22:45




          the issue is that i want all the rows to be actually 1 row for
          – Drew Pham
          Nov 19 at 22:45












          Sorry, I don't understand. Could you post your expected output as an edit to your question?
          – sacul
          Nov 19 at 22:49




          Sorry, I don't understand. Could you post your expected output as an edit to your question?
          – sacul
          Nov 19 at 22:49


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53383639%2fhow-can-i-convert-a-pandas-series-that-contains-an-array-of-json-dictionaries-in%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          Origin of the phrase “under your belt”?