Simplify [p∧ (¬(¬p v q)) ] v (p ∧ q) so that it become p, q, ¬p, or ¬q












1












$begingroup$


Had a question on a test that asked for us to simplify (using rules of inference) the following proposition: [p∧ (¬(¬p v q)) ] v (p ∧ q)

to p, q, or their negation (¬p, ¬q). Here is what I did:



1) [p∧ (¬(¬p v q)) ] v (p ∧ q)



2) [p∧ (p ∧ ¬q)) ] v (p ∧ q) DeMorgan's Law



3) [(p∧ p) ∧ ¬q] v (p∧ q) Associative law



4) [p ∧ ¬q] v (p∧ q) Idempotent law



Step 4 is where I got stuck. I didn't know what to do afterwards. So I substituted S= (p∧ q) and did distributive law



5) [p ∧ ¬q] v S



6) (S v p) ∧ (S v ¬q) Distributive law



7) [ (p∧q) v p ] ∧ [ (p∧q) v ¬q] Substitute S=(p∧q) back in



8) [ (pvp) ∧ (pvq) ] ∧ [ (¬q v p) ∧ (¬q v q) ] Distributive law



9) [ p ∧ (pvq) ] ∧ [ (¬q v p) ∧ T ] Idempotent law and Domination law



10) p ∧ (¬q v p) Absorption and Identity law



I stopped there. I didn't know how to further simplify step 10 into p, q, ¬p, or ¬q. I was thinking maybe absorption law? But p ∧ (¬q v p) is not the same as p ∧ (q v p), so I couldn't simplify it to p, correct? Can someone help me further simplify it? Do you think I will get most the marks for this question or was my approach completely wrong?










share|cite|improve this question











$endgroup$












  • $begingroup$
    By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago
















1












$begingroup$


Had a question on a test that asked for us to simplify (using rules of inference) the following proposition: [p∧ (¬(¬p v q)) ] v (p ∧ q)

to p, q, or their negation (¬p, ¬q). Here is what I did:



1) [p∧ (¬(¬p v q)) ] v (p ∧ q)



2) [p∧ (p ∧ ¬q)) ] v (p ∧ q) DeMorgan's Law



3) [(p∧ p) ∧ ¬q] v (p∧ q) Associative law



4) [p ∧ ¬q] v (p∧ q) Idempotent law



Step 4 is where I got stuck. I didn't know what to do afterwards. So I substituted S= (p∧ q) and did distributive law



5) [p ∧ ¬q] v S



6) (S v p) ∧ (S v ¬q) Distributive law



7) [ (p∧q) v p ] ∧ [ (p∧q) v ¬q] Substitute S=(p∧q) back in



8) [ (pvp) ∧ (pvq) ] ∧ [ (¬q v p) ∧ (¬q v q) ] Distributive law



9) [ p ∧ (pvq) ] ∧ [ (¬q v p) ∧ T ] Idempotent law and Domination law



10) p ∧ (¬q v p) Absorption and Identity law



I stopped there. I didn't know how to further simplify step 10 into p, q, ¬p, or ¬q. I was thinking maybe absorption law? But p ∧ (¬q v p) is not the same as p ∧ (q v p), so I couldn't simplify it to p, correct? Can someone help me further simplify it? Do you think I will get most the marks for this question or was my approach completely wrong?










share|cite|improve this question











$endgroup$












  • $begingroup$
    By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago














1












1








1





$begingroup$


Had a question on a test that asked for us to simplify (using rules of inference) the following proposition: [p∧ (¬(¬p v q)) ] v (p ∧ q)

to p, q, or their negation (¬p, ¬q). Here is what I did:



1) [p∧ (¬(¬p v q)) ] v (p ∧ q)



2) [p∧ (p ∧ ¬q)) ] v (p ∧ q) DeMorgan's Law



3) [(p∧ p) ∧ ¬q] v (p∧ q) Associative law



4) [p ∧ ¬q] v (p∧ q) Idempotent law



Step 4 is where I got stuck. I didn't know what to do afterwards. So I substituted S= (p∧ q) and did distributive law



5) [p ∧ ¬q] v S



6) (S v p) ∧ (S v ¬q) Distributive law



7) [ (p∧q) v p ] ∧ [ (p∧q) v ¬q] Substitute S=(p∧q) back in



8) [ (pvp) ∧ (pvq) ] ∧ [ (¬q v p) ∧ (¬q v q) ] Distributive law



9) [ p ∧ (pvq) ] ∧ [ (¬q v p) ∧ T ] Idempotent law and Domination law



10) p ∧ (¬q v p) Absorption and Identity law



I stopped there. I didn't know how to further simplify step 10 into p, q, ¬p, or ¬q. I was thinking maybe absorption law? But p ∧ (¬q v p) is not the same as p ∧ (q v p), so I couldn't simplify it to p, correct? Can someone help me further simplify it? Do you think I will get most the marks for this question or was my approach completely wrong?










share|cite|improve this question











$endgroup$




Had a question on a test that asked for us to simplify (using rules of inference) the following proposition: [p∧ (¬(¬p v q)) ] v (p ∧ q)

to p, q, or their negation (¬p, ¬q). Here is what I did:



1) [p∧ (¬(¬p v q)) ] v (p ∧ q)



2) [p∧ (p ∧ ¬q)) ] v (p ∧ q) DeMorgan's Law



3) [(p∧ p) ∧ ¬q] v (p∧ q) Associative law



4) [p ∧ ¬q] v (p∧ q) Idempotent law



Step 4 is where I got stuck. I didn't know what to do afterwards. So I substituted S= (p∧ q) and did distributive law



5) [p ∧ ¬q] v S



6) (S v p) ∧ (S v ¬q) Distributive law



7) [ (p∧q) v p ] ∧ [ (p∧q) v ¬q] Substitute S=(p∧q) back in



8) [ (pvp) ∧ (pvq) ] ∧ [ (¬q v p) ∧ (¬q v q) ] Distributive law



9) [ p ∧ (pvq) ] ∧ [ (¬q v p) ∧ T ] Idempotent law and Domination law



10) p ∧ (¬q v p) Absorption and Identity law



I stopped there. I didn't know how to further simplify step 10 into p, q, ¬p, or ¬q. I was thinking maybe absorption law? But p ∧ (¬q v p) is not the same as p ∧ (q v p), so I couldn't simplify it to p, correct? Can someone help me further simplify it? Do you think I will get most the marks for this question or was my approach completely wrong?







discrete-mathematics logic propositional-calculus boolean-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 min ago









Bram28

62.6k44793




62.6k44793










asked 5 hours ago









NevNev

254




254












  • $begingroup$
    By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago


















  • $begingroup$
    By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
    $endgroup$
    – Minus One-Twelfth
    2 hours ago
















$begingroup$
By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
$endgroup$
– Minus One-Twelfth
2 hours ago




$begingroup$
By the way, $pland (neg q lor p)$ can be immediately simplified to $p$ by what is known as the absorption law. See for example math.stackexchange.com/questions/2421690/… for some further reading.
$endgroup$
– Minus One-Twelfth
2 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

This is a common 'mistake': to Distribute when you should really 'Un-Distribute'. That is, you can see:



$(p land neg q) lor (p land q)$



as the result of applying Distribution to:



$p land (neg q lor q)$



But given that this is an equivalence, that means you can go the other way around as well (i.e. 'un-distribute' ... sometimes I call this 'reverse distribution' or 'factoring')



Note that from your last line we can do this as well:



$p land (neg q lor p) = (bot lor p) land (neg q lor p) = (bot land neg q) lor p = bot lor p =p$



Finally, the fact that $(p land q) lor (p land neg q)$ works out to just $p$ is such a common and handy equivalence that it has been given its own name:



Adjacency



$(p land q) lor (p land neg q) =p$



(and its dual form:) $(p lor q) land (p lor neg q)=p$



So, definitely put that one in your boolean algebra toolbox!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
    $endgroup$
    – Nev
    4 hours ago






  • 1




    $begingroup$
    @nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
    $endgroup$
    – Bram28
    4 hours ago



















3












$begingroup$

I'm going to use some shorthand notation: $pq$ for $p land q$, and $p + q$ for $p lor q$. Your proposition is $$p(neg(neg p + q)) + pq.$$ Distributing the negation on the left, we obtain $$p (neg (neg p + q)) + pq equiv pp(neg q) + pq.$$ Note that $pp equiv p$. This now gives us $$p(neg q) + pq.$$



We can "factor out" that $p$ to obtain $$p (neg q) + pq equiv p(neg q + q) equiv p,$$ and we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
    $endgroup$
    – Nev
    4 hours ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3114498%2fsimplify-p%25e2%2588%25a7-%25c2%25ac%25c2%25acp-v-q-v-p-%25e2%2588%25a7-q-so-that-it-become-p-q-%25c2%25acp-or-%25c2%25acq%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

This is a common 'mistake': to Distribute when you should really 'Un-Distribute'. That is, you can see:



$(p land neg q) lor (p land q)$



as the result of applying Distribution to:



$p land (neg q lor q)$



But given that this is an equivalence, that means you can go the other way around as well (i.e. 'un-distribute' ... sometimes I call this 'reverse distribution' or 'factoring')



Note that from your last line we can do this as well:



$p land (neg q lor p) = (bot lor p) land (neg q lor p) = (bot land neg q) lor p = bot lor p =p$



Finally, the fact that $(p land q) lor (p land neg q)$ works out to just $p$ is such a common and handy equivalence that it has been given its own name:



Adjacency



$(p land q) lor (p land neg q) =p$



(and its dual form:) $(p lor q) land (p lor neg q)=p$



So, definitely put that one in your boolean algebra toolbox!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
    $endgroup$
    – Nev
    4 hours ago






  • 1




    $begingroup$
    @nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
    $endgroup$
    – Bram28
    4 hours ago
















4












$begingroup$

This is a common 'mistake': to Distribute when you should really 'Un-Distribute'. That is, you can see:



$(p land neg q) lor (p land q)$



as the result of applying Distribution to:



$p land (neg q lor q)$



But given that this is an equivalence, that means you can go the other way around as well (i.e. 'un-distribute' ... sometimes I call this 'reverse distribution' or 'factoring')



Note that from your last line we can do this as well:



$p land (neg q lor p) = (bot lor p) land (neg q lor p) = (bot land neg q) lor p = bot lor p =p$



Finally, the fact that $(p land q) lor (p land neg q)$ works out to just $p$ is such a common and handy equivalence that it has been given its own name:



Adjacency



$(p land q) lor (p land neg q) =p$



(and its dual form:) $(p lor q) land (p lor neg q)=p$



So, definitely put that one in your boolean algebra toolbox!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
    $endgroup$
    – Nev
    4 hours ago






  • 1




    $begingroup$
    @nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
    $endgroup$
    – Bram28
    4 hours ago














4












4








4





$begingroup$

This is a common 'mistake': to Distribute when you should really 'Un-Distribute'. That is, you can see:



$(p land neg q) lor (p land q)$



as the result of applying Distribution to:



$p land (neg q lor q)$



But given that this is an equivalence, that means you can go the other way around as well (i.e. 'un-distribute' ... sometimes I call this 'reverse distribution' or 'factoring')



Note that from your last line we can do this as well:



$p land (neg q lor p) = (bot lor p) land (neg q lor p) = (bot land neg q) lor p = bot lor p =p$



Finally, the fact that $(p land q) lor (p land neg q)$ works out to just $p$ is such a common and handy equivalence that it has been given its own name:



Adjacency



$(p land q) lor (p land neg q) =p$



(and its dual form:) $(p lor q) land (p lor neg q)=p$



So, definitely put that one in your boolean algebra toolbox!






share|cite|improve this answer











$endgroup$



This is a common 'mistake': to Distribute when you should really 'Un-Distribute'. That is, you can see:



$(p land neg q) lor (p land q)$



as the result of applying Distribution to:



$p land (neg q lor q)$



But given that this is an equivalence, that means you can go the other way around as well (i.e. 'un-distribute' ... sometimes I call this 'reverse distribution' or 'factoring')



Note that from your last line we can do this as well:



$p land (neg q lor p) = (bot lor p) land (neg q lor p) = (bot land neg q) lor p = bot lor p =p$



Finally, the fact that $(p land q) lor (p land neg q)$ works out to just $p$ is such a common and handy equivalence that it has been given its own name:



Adjacency



$(p land q) lor (p land neg q) =p$



(and its dual form:) $(p lor q) land (p lor neg q)=p$



So, definitely put that one in your boolean algebra toolbox!







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 4 hours ago

























answered 5 hours ago









Bram28Bram28

62.6k44793




62.6k44793












  • $begingroup$
    Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
    $endgroup$
    – Nev
    4 hours ago






  • 1




    $begingroup$
    @nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
    $endgroup$
    – Bram28
    4 hours ago


















  • $begingroup$
    Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
    $endgroup$
    – Nev
    4 hours ago






  • 1




    $begingroup$
    @nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
    $endgroup$
    – Bram28
    4 hours ago
















$begingroup$
Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
$endgroup$
– Nev
4 hours ago




$begingroup$
Ohhhh you're totally right, that went right over my head. Judging by what I did for this question, do you think I'll lose all the marks?
$endgroup$
– Nev
4 hours ago




1




1




$begingroup$
@nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
$endgroup$
– Bram28
4 hours ago




$begingroup$
@nev all your steps were correct, and you did get close, so I would give you a good chunk of the points! :)
$endgroup$
– Bram28
4 hours ago











3












$begingroup$

I'm going to use some shorthand notation: $pq$ for $p land q$, and $p + q$ for $p lor q$. Your proposition is $$p(neg(neg p + q)) + pq.$$ Distributing the negation on the left, we obtain $$p (neg (neg p + q)) + pq equiv pp(neg q) + pq.$$ Note that $pp equiv p$. This now gives us $$p(neg q) + pq.$$



We can "factor out" that $p$ to obtain $$p (neg q) + pq equiv p(neg q + q) equiv p,$$ and we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
    $endgroup$
    – Nev
    4 hours ago
















3












$begingroup$

I'm going to use some shorthand notation: $pq$ for $p land q$, and $p + q$ for $p lor q$. Your proposition is $$p(neg(neg p + q)) + pq.$$ Distributing the negation on the left, we obtain $$p (neg (neg p + q)) + pq equiv pp(neg q) + pq.$$ Note that $pp equiv p$. This now gives us $$p(neg q) + pq.$$



We can "factor out" that $p$ to obtain $$p (neg q) + pq equiv p(neg q + q) equiv p,$$ and we're done.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
    $endgroup$
    – Nev
    4 hours ago














3












3








3





$begingroup$

I'm going to use some shorthand notation: $pq$ for $p land q$, and $p + q$ for $p lor q$. Your proposition is $$p(neg(neg p + q)) + pq.$$ Distributing the negation on the left, we obtain $$p (neg (neg p + q)) + pq equiv pp(neg q) + pq.$$ Note that $pp equiv p$. This now gives us $$p(neg q) + pq.$$



We can "factor out" that $p$ to obtain $$p (neg q) + pq equiv p(neg q + q) equiv p,$$ and we're done.






share|cite|improve this answer









$endgroup$



I'm going to use some shorthand notation: $pq$ for $p land q$, and $p + q$ for $p lor q$. Your proposition is $$p(neg(neg p + q)) + pq.$$ Distributing the negation on the left, we obtain $$p (neg (neg p + q)) + pq equiv pp(neg q) + pq.$$ Note that $pp equiv p$. This now gives us $$p(neg q) + pq.$$



We can "factor out" that $p$ to obtain $$p (neg q) + pq equiv p(neg q + q) equiv p,$$ and we're done.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









rwboglrwbogl

1,007617




1,007617












  • $begingroup$
    Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
    $endgroup$
    – Nev
    4 hours ago


















  • $begingroup$
    Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
    $endgroup$
    – Nev
    4 hours ago
















$begingroup$
Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
$endgroup$
– Nev
4 hours ago




$begingroup$
Yes I totally see that now, thanks! I really hope I get at least some partial marks. I was supposed to "undo" the distribution rather than distribute again
$endgroup$
– Nev
4 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3114498%2fsimplify-p%25e2%2588%25a7-%25c2%25ac%25c2%25acp-v-q-v-p-%25e2%2588%25a7-q-so-that-it-become-p-q-%25c2%25acp-or-%25c2%25acq%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

"Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

Alcedinidae

Origin of the phrase “under your belt”?