Equation with several exponents
$begingroup$
Is there a way to get the result for this value of x?
x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2])
I've tried Solve
, FindInstance
and I did not get a solution
I tried this:
Solve[x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2]),{x}]
equation-solving
$endgroup$
add a comment |
$begingroup$
Is there a way to get the result for this value of x?
x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2])
I've tried Solve
, FindInstance
and I did not get a solution
I tried this:
Solve[x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2]),{x}]
equation-solving
$endgroup$
add a comment |
$begingroup$
Is there a way to get the result for this value of x?
x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2])
I've tried Solve
, FindInstance
and I did not get a solution
I tried this:
Solve[x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2]),{x}]
equation-solving
$endgroup$
Is there a way to get the result for this value of x?
x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2])
I've tried Solve
, FindInstance
and I did not get a solution
I tried this:
Solve[x^x^(x^(1/6)/6)==Sqrt[2^9]^(2*Sqrt[2])^(2/3+2*Sqrt[2]),{x}]
equation-solving
equation-solving
asked 13 hours ago
LCarvalhoLCarvalho
5,78642986
5,78642986
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Try
NSolve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
(*{x->512}*)
$endgroup$
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!
$endgroup$
– Ulrich Neumann
13 hours ago
add a comment |
$begingroup$
This is essentially the same as Ulrich's solution but provides the motivation for restricting the domain of Solve
eqn = x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]) //
Simplify
(* x^x^(x^(1/6)/6) == 8^(3 8^Sqrt[2]) *)
The RHS of eqn
is real
Element[eqn[[-1]], Reals]
(* True *)
Consequently, finding the FunctionDomain
for the LHS of eqn
const = FunctionDomain[eqn[[1]], x] // Simplify
(* x > 0 *)
Then,
Solve[eqn && const, x][[1]]
(* {x -> 512} *)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192383%2fequation-with-several-exponents%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try
NSolve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
(*{x->512}*)
$endgroup$
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!
$endgroup$
– Ulrich Neumann
13 hours ago
add a comment |
$begingroup$
Try
NSolve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
(*{x->512}*)
$endgroup$
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!
$endgroup$
– Ulrich Neumann
13 hours ago
add a comment |
$begingroup$
Try
NSolve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
(*{x->512}*)
$endgroup$
Try
NSolve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
(*{x->512}*)
answered 13 hours ago
Ulrich NeumannUlrich Neumann
9,181516
9,181516
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!
$endgroup$
– Ulrich Neumann
13 hours ago
add a comment |
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!
$endgroup$
– Ulrich Neumann
13 hours ago
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
$begingroup$
Little detail that makes all the difference. Thanks a lot!!!
$endgroup$
– LCarvalho
13 hours ago
4
4
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!$endgroup$
– Ulrich Neumann
13 hours ago
$begingroup$
Solve[x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]), x, Reals]
also works!$endgroup$
– Ulrich Neumann
13 hours ago
add a comment |
$begingroup$
This is essentially the same as Ulrich's solution but provides the motivation for restricting the domain of Solve
eqn = x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]) //
Simplify
(* x^x^(x^(1/6)/6) == 8^(3 8^Sqrt[2]) *)
The RHS of eqn
is real
Element[eqn[[-1]], Reals]
(* True *)
Consequently, finding the FunctionDomain
for the LHS of eqn
const = FunctionDomain[eqn[[1]], x] // Simplify
(* x > 0 *)
Then,
Solve[eqn && const, x][[1]]
(* {x -> 512} *)
$endgroup$
add a comment |
$begingroup$
This is essentially the same as Ulrich's solution but provides the motivation for restricting the domain of Solve
eqn = x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]) //
Simplify
(* x^x^(x^(1/6)/6) == 8^(3 8^Sqrt[2]) *)
The RHS of eqn
is real
Element[eqn[[-1]], Reals]
(* True *)
Consequently, finding the FunctionDomain
for the LHS of eqn
const = FunctionDomain[eqn[[1]], x] // Simplify
(* x > 0 *)
Then,
Solve[eqn && const, x][[1]]
(* {x -> 512} *)
$endgroup$
add a comment |
$begingroup$
This is essentially the same as Ulrich's solution but provides the motivation for restricting the domain of Solve
eqn = x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]) //
Simplify
(* x^x^(x^(1/6)/6) == 8^(3 8^Sqrt[2]) *)
The RHS of eqn
is real
Element[eqn[[-1]], Reals]
(* True *)
Consequently, finding the FunctionDomain
for the LHS of eqn
const = FunctionDomain[eqn[[1]], x] // Simplify
(* x > 0 *)
Then,
Solve[eqn && const, x][[1]]
(* {x -> 512} *)
$endgroup$
This is essentially the same as Ulrich's solution but provides the motivation for restricting the domain of Solve
eqn = x^x^(x^(1/6)/6) == Sqrt[2^9]^(2*Sqrt[2])^(2/3 + 2*Sqrt[2]) //
Simplify
(* x^x^(x^(1/6)/6) == 8^(3 8^Sqrt[2]) *)
The RHS of eqn
is real
Element[eqn[[-1]], Reals]
(* True *)
Consequently, finding the FunctionDomain
for the LHS of eqn
const = FunctionDomain[eqn[[1]], x] // Simplify
(* x > 0 *)
Then,
Solve[eqn && const, x][[1]]
(* {x -> 512} *)
answered 6 hours ago
Bob HanlonBob Hanlon
60.6k33597
60.6k33597
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192383%2fequation-with-several-exponents%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown