Pandas - subtring a column where position number in separate column












1














Dataset



df = pd.DataFrame({'a': [0,3,4], 'b': ['0101010', '0100010', '0111100']})


Basically trying to create a column where it takes the substring of length 1 of column b starting at position number in column a



Attempt



position = df['a']
df['c'] = df['b'].str[position]


Desired Output



a    b        c
0 0101010 0
3 0100010 0
4 0111100 1









share|improve this question



























    1














    Dataset



    df = pd.DataFrame({'a': [0,3,4], 'b': ['0101010', '0100010', '0111100']})


    Basically trying to create a column where it takes the substring of length 1 of column b starting at position number in column a



    Attempt



    position = df['a']
    df['c'] = df['b'].str[position]


    Desired Output



    a    b        c
    0 0101010 0
    3 0100010 0
    4 0111100 1









    share|improve this question

























      1












      1








      1







      Dataset



      df = pd.DataFrame({'a': [0,3,4], 'b': ['0101010', '0100010', '0111100']})


      Basically trying to create a column where it takes the substring of length 1 of column b starting at position number in column a



      Attempt



      position = df['a']
      df['c'] = df['b'].str[position]


      Desired Output



      a    b        c
      0 0101010 0
      3 0100010 0
      4 0111100 1









      share|improve this question













      Dataset



      df = pd.DataFrame({'a': [0,3,4], 'b': ['0101010', '0100010', '0111100']})


      Basically trying to create a column where it takes the substring of length 1 of column b starting at position number in column a



      Attempt



      position = df['a']
      df['c'] = df['b'].str[position]


      Desired Output



      a    b        c
      0 0101010 0
      3 0100010 0
      4 0111100 1






      pandas dataframe






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 20 '18 at 12:22









      AK91

      777




      777
























          1 Answer
          1






          active

          oldest

          votes


















          3














          Use list comprehension with zip:



          df['c'] = [b[a] for a, b in zip(df.a, df.b)]


          Or apply:



          df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)




          print (df)
          a b c
          0 0 0101010 0
          1 3 0100010 0
          2 4 0111100 1


          Performance is different:



          #[3000 rows x 2 columns]
          df = pd.concat([df] * 1000, ignore_index=True)

          In [236]: %timeit df['c'] = [b[a] for a, b in zip(df.a, df.b)]
          557 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

          In [237]: %timeit df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)
          57.3 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)





          share|improve this answer

















          • 1




            @jezreal - legend, thanks
            – AK91
            Nov 20 '18 at 12:51











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392901%2fpandas-subtring-a-column-where-position-number-in-separate-column%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Use list comprehension with zip:



          df['c'] = [b[a] for a, b in zip(df.a, df.b)]


          Or apply:



          df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)




          print (df)
          a b c
          0 0 0101010 0
          1 3 0100010 0
          2 4 0111100 1


          Performance is different:



          #[3000 rows x 2 columns]
          df = pd.concat([df] * 1000, ignore_index=True)

          In [236]: %timeit df['c'] = [b[a] for a, b in zip(df.a, df.b)]
          557 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

          In [237]: %timeit df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)
          57.3 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)





          share|improve this answer

















          • 1




            @jezreal - legend, thanks
            – AK91
            Nov 20 '18 at 12:51
















          3














          Use list comprehension with zip:



          df['c'] = [b[a] for a, b in zip(df.a, df.b)]


          Or apply:



          df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)




          print (df)
          a b c
          0 0 0101010 0
          1 3 0100010 0
          2 4 0111100 1


          Performance is different:



          #[3000 rows x 2 columns]
          df = pd.concat([df] * 1000, ignore_index=True)

          In [236]: %timeit df['c'] = [b[a] for a, b in zip(df.a, df.b)]
          557 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

          In [237]: %timeit df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)
          57.3 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)





          share|improve this answer

















          • 1




            @jezreal - legend, thanks
            – AK91
            Nov 20 '18 at 12:51














          3












          3








          3






          Use list comprehension with zip:



          df['c'] = [b[a] for a, b in zip(df.a, df.b)]


          Or apply:



          df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)




          print (df)
          a b c
          0 0 0101010 0
          1 3 0100010 0
          2 4 0111100 1


          Performance is different:



          #[3000 rows x 2 columns]
          df = pd.concat([df] * 1000, ignore_index=True)

          In [236]: %timeit df['c'] = [b[a] for a, b in zip(df.a, df.b)]
          557 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

          In [237]: %timeit df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)
          57.3 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)





          share|improve this answer












          Use list comprehension with zip:



          df['c'] = [b[a] for a, b in zip(df.a, df.b)]


          Or apply:



          df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)




          print (df)
          a b c
          0 0 0101010 0
          1 3 0100010 0
          2 4 0111100 1


          Performance is different:



          #[3000 rows x 2 columns]
          df = pd.concat([df] * 1000, ignore_index=True)

          In [236]: %timeit df['c'] = [b[a] for a, b in zip(df.a, df.b)]
          557 µs ± 25.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

          In [237]: %timeit df['c'] = df.apply(lambda x: x['b'][x['a']], axis=1)
          57.3 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 20 '18 at 12:24









          jezrael

          321k22263341




          321k22263341








          • 1




            @jezreal - legend, thanks
            – AK91
            Nov 20 '18 at 12:51














          • 1




            @jezreal - legend, thanks
            – AK91
            Nov 20 '18 at 12:51








          1




          1




          @jezreal - legend, thanks
          – AK91
          Nov 20 '18 at 12:51




          @jezreal - legend, thanks
          – AK91
          Nov 20 '18 at 12:51


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392901%2fpandas-subtring-a-column-where-position-number-in-separate-column%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          RAC Tourist Trophy