find value of trig integral
$begingroup$
Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$
what i try
$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$
But I don't know how to proceed further. Could you please help?
definite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$
what i try
$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$
But I don't know how to proceed further. Could you please help?
definite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$
what i try
$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$
But I don't know how to proceed further. Could you please help?
definite-integrals trigonometric-integrals
$endgroup$
Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$
what i try
$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$
But I don't know how to proceed further. Could you please help?
definite-integrals trigonometric-integrals
definite-integrals trigonometric-integrals
edited 10 hours ago
gt6989b
34k22455
34k22455
asked 10 hours ago
jackyjacky
719512
719512
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that
begin{align*}
csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
=left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
end{align*}
Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain
begin{align*}
I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
&=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
&=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
&=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
&=frac12left[frac1{n-1}+frac1{n+1}right]
end{align*}
$$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$
$endgroup$
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
add a comment |
$begingroup$
Slightly different approach, same answer.
Let $u=tan(x/2)$, then
$$
begin{align}
int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
&=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
&=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
&=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
&=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
&=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
&=frac{n}{n^2-1}
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that
begin{align*}
csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
=left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
end{align*}
Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain
begin{align*}
I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
&=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
&=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
&=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
&=frac12left[frac1{n-1}+frac1{n+1}right]
end{align*}
$$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$
$endgroup$
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
add a comment |
$begingroup$
Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that
begin{align*}
csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
=left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
end{align*}
Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain
begin{align*}
I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
&=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
&=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
&=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
&=frac12left[frac1{n-1}+frac1{n+1}right]
end{align*}
$$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$
$endgroup$
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
add a comment |
$begingroup$
Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that
begin{align*}
csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
=left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
end{align*}
Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain
begin{align*}
I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
&=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
&=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
&=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
&=frac12left[frac1{n-1}+frac1{n+1}right]
end{align*}
$$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$
$endgroup$
Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that
begin{align*}
csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
=left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
end{align*}
Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain
begin{align*}
I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
&=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
&=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
&=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
&=frac12left[frac1{n-1}+frac1{n+1}right]
end{align*}
$$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$
answered 10 hours ago
mrtaurhomrtaurho
4,86641235
4,86641235
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
add a comment |
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
$begingroup$
For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
$endgroup$
– Stobor
2 hours ago
add a comment |
$begingroup$
Slightly different approach, same answer.
Let $u=tan(x/2)$, then
$$
begin{align}
int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
&=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
&=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
&=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
&=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
&=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
&=frac{n}{n^2-1}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Slightly different approach, same answer.
Let $u=tan(x/2)$, then
$$
begin{align}
int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
&=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
&=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
&=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
&=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
&=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
&=frac{n}{n^2-1}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Slightly different approach, same answer.
Let $u=tan(x/2)$, then
$$
begin{align}
int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
&=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
&=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
&=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
&=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
&=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
&=frac{n}{n^2-1}
end{align}
$$
$endgroup$
Slightly different approach, same answer.
Let $u=tan(x/2)$, then
$$
begin{align}
int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
&=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
&=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
&=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
&=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
&=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
&=frac{n}{n^2-1}
end{align}
$$
answered 8 hours ago
robjohn♦robjohn
267k27308632
267k27308632
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown