find value of trig integral












4












$begingroup$



Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




what i try



$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$



But I don't know how to proceed further. Could you please help?










share|cite|improve this question











$endgroup$

















    4












    $begingroup$



    Finding
    $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




    what i try



    $$
    begin{split}
    I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
    &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
    end{split}
    $$



    But I don't know how to proceed further. Could you please help?










    share|cite|improve this question











    $endgroup$















      4












      4








      4





      $begingroup$



      Finding
      $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




      what i try



      $$
      begin{split}
      I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
      &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
      end{split}
      $$



      But I don't know how to proceed further. Could you please help?










      share|cite|improve this question











      $endgroup$





      Finding
      $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




      what i try



      $$
      begin{split}
      I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
      &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
      end{split}
      $$



      But I don't know how to proceed further. Could you please help?







      definite-integrals trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago









      gt6989b

      34k22455




      34k22455










      asked 10 hours ago









      jackyjacky

      719512




      719512






















          2 Answers
          2






          active

          oldest

          votes


















          8












          $begingroup$

          Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



          begin{align*}
          csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
          =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
          end{align*}



          Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



          begin{align*}
          I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
          &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
          &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
          &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
          &=frac12left[frac1{n-1}+frac1{n+1}right]
          end{align*}




          $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
            $endgroup$
            – Stobor
            2 hours ago



















          5












          $begingroup$

          Slightly different approach, same answer.



          Let $u=tan(x/2)$, then
          $$
          begin{align}
          int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
          &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
          &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
          &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
          &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
          &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
          &=frac{n}{n^2-1}
          end{align}
          $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8












            $begingroup$

            Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



            begin{align*}
            csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
            =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
            end{align*}



            Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



            begin{align*}
            I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
            &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
            &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
            &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
            &=frac12left[frac1{n-1}+frac1{n+1}right]
            end{align*}




            $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
              $endgroup$
              – Stobor
              2 hours ago
















            8












            $begingroup$

            Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



            begin{align*}
            csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
            =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
            end{align*}



            Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



            begin{align*}
            I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
            &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
            &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
            &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
            &=frac12left[frac1{n-1}+frac1{n+1}right]
            end{align*}




            $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
              $endgroup$
              – Stobor
              2 hours ago














            8












            8








            8





            $begingroup$

            Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



            begin{align*}
            csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
            =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
            end{align*}



            Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



            begin{align*}
            I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
            &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
            &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
            &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
            &=frac12left[frac1{n-1}+frac1{n+1}right]
            end{align*}




            $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







            share|cite|improve this answer









            $endgroup$



            Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



            begin{align*}
            csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
            =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
            end{align*}



            Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



            begin{align*}
            I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
            &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
            &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
            &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
            &=frac12left[frac1{n-1}+frac1{n+1}right]
            end{align*}




            $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 10 hours ago









            mrtaurhomrtaurho

            4,86641235




            4,86641235












            • $begingroup$
              For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
              $endgroup$
              – Stobor
              2 hours ago


















            • $begingroup$
              For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
              $endgroup$
              – Stobor
              2 hours ago
















            $begingroup$
            For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
            $endgroup$
            – Stobor
            2 hours ago




            $begingroup$
            For anyone following along - pay attention to where the limits of the integration change along with the change of variable from $dx$ to $du$.
            $endgroup$
            – Stobor
            2 hours ago











            5












            $begingroup$

            Slightly different approach, same answer.



            Let $u=tan(x/2)$, then
            $$
            begin{align}
            int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
            &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
            &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
            &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
            &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
            &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
            &=frac{n}{n^2-1}
            end{align}
            $$






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              Slightly different approach, same answer.



              Let $u=tan(x/2)$, then
              $$
              begin{align}
              int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
              &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
              &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
              &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
              &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
              &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
              &=frac{n}{n^2-1}
              end{align}
              $$






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                Slightly different approach, same answer.



                Let $u=tan(x/2)$, then
                $$
                begin{align}
                int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                &=frac{n}{n^2-1}
                end{align}
                $$






                share|cite|improve this answer









                $endgroup$



                Slightly different approach, same answer.



                Let $u=tan(x/2)$, then
                $$
                begin{align}
                int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                &=frac{n}{n^2-1}
                end{align}
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                robjohnrobjohn

                267k27308632




                267k27308632






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                    Alcedinidae

                    Origin of the phrase “under your belt”?