How to implement Maxout activation for Conv1D output
I am new to DL and re-coding the lasagne CNN to Keras(TF)
the part of the layer is Conv1D
then Maxout
, with feature maxout
The Maxout function removed from keras2.0
I take reference to stack overflow and git-hub
to write customize lambda function
def Maxout(x, num_unit=None):
input_shape = x.get_shape().as_list()
ch = input_shape[-1]
num_unit = int(ch / 2)
assert ch is not None and ch % num_unit == 0
x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
x = K.backend.max(x, axis=1,keepdims=True)
input_tensor = Input(shape=(128,32),name = 'input')
conv4= (Conv1D(64, kernel_size=5, strides=1,
padding = 'same',
name = 'conv4',
input_shape=(128,32)))(maxpool1)
output = Lambda(Maxout,name='maxout')(conv4)
model = Model(inputs=input_tensor, outputs=output)
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 128, 32) 0
_________________________________________________________________
conv4 (Conv1D) (None, 128, 64) 20544
_________________________________________________________________
maxout (Lambda) (None, 1, 32) 0
=================================================================
where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)
How can i get the shape of output in 128,32?
python keras deep-learning
add a comment |
I am new to DL and re-coding the lasagne CNN to Keras(TF)
the part of the layer is Conv1D
then Maxout
, with feature maxout
The Maxout function removed from keras2.0
I take reference to stack overflow and git-hub
to write customize lambda function
def Maxout(x, num_unit=None):
input_shape = x.get_shape().as_list()
ch = input_shape[-1]
num_unit = int(ch / 2)
assert ch is not None and ch % num_unit == 0
x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
x = K.backend.max(x, axis=1,keepdims=True)
input_tensor = Input(shape=(128,32),name = 'input')
conv4= (Conv1D(64, kernel_size=5, strides=1,
padding = 'same',
name = 'conv4',
input_shape=(128,32)))(maxpool1)
output = Lambda(Maxout,name='maxout')(conv4)
model = Model(inputs=input_tensor, outputs=output)
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 128, 32) 0
_________________________________________________________________
conv4 (Conv1D) (None, 128, 64) 20544
_________________________________________________________________
maxout (Lambda) (None, 1, 32) 0
=================================================================
where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)
How can i get the shape of output in 128,32?
python keras deep-learning
add a comment |
I am new to DL and re-coding the lasagne CNN to Keras(TF)
the part of the layer is Conv1D
then Maxout
, with feature maxout
The Maxout function removed from keras2.0
I take reference to stack overflow and git-hub
to write customize lambda function
def Maxout(x, num_unit=None):
input_shape = x.get_shape().as_list()
ch = input_shape[-1]
num_unit = int(ch / 2)
assert ch is not None and ch % num_unit == 0
x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
x = K.backend.max(x, axis=1,keepdims=True)
input_tensor = Input(shape=(128,32),name = 'input')
conv4= (Conv1D(64, kernel_size=5, strides=1,
padding = 'same',
name = 'conv4',
input_shape=(128,32)))(maxpool1)
output = Lambda(Maxout,name='maxout')(conv4)
model = Model(inputs=input_tensor, outputs=output)
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 128, 32) 0
_________________________________________________________________
conv4 (Conv1D) (None, 128, 64) 20544
_________________________________________________________________
maxout (Lambda) (None, 1, 32) 0
=================================================================
where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)
How can i get the shape of output in 128,32?
python keras deep-learning
I am new to DL and re-coding the lasagne CNN to Keras(TF)
the part of the layer is Conv1D
then Maxout
, with feature maxout
The Maxout function removed from keras2.0
I take reference to stack overflow and git-hub
to write customize lambda function
def Maxout(x, num_unit=None):
input_shape = x.get_shape().as_list()
ch = input_shape[-1]
num_unit = int(ch / 2)
assert ch is not None and ch % num_unit == 0
x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
x = K.backend.max(x, axis=1,keepdims=True)
input_tensor = Input(shape=(128,32),name = 'input')
conv4= (Conv1D(64, kernel_size=5, strides=1,
padding = 'same',
name = 'conv4',
input_shape=(128,32)))(maxpool1)
output = Lambda(Maxout,name='maxout')(conv4)
model = Model(inputs=input_tensor, outputs=output)
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 128, 32) 0
_________________________________________________________________
conv4 (Conv1D) (None, 128, 64) 20544
_________________________________________________________________
maxout (Lambda) (None, 1, 32) 0
=================================================================
where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)
How can i get the shape of output in 128,32?
python keras deep-learning
python keras deep-learning
edited Nov 20 at 7:59
asked Nov 20 at 7:08
alan alan
62
62
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387898%2fhow-to-implement-maxout-activation-for-conv1d-output%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387898%2fhow-to-implement-maxout-activation-for-conv1d-output%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown