How to implement Maxout activation for Conv1D output












0














I am new to DL and re-coding the lasagne CNN to Keras(TF)



the part of the layer is Conv1D then Maxout , with feature maxout



The Maxout function removed from keras2.0



I take reference to stack overflow and git-hub
to write customize lambda function



def Maxout(x, num_unit=None):
input_shape = x.get_shape().as_list()
ch = input_shape[-1]
num_unit = int(ch / 2)
assert ch is not None and ch % num_unit == 0
x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
x = K.backend.max(x, axis=1,keepdims=True)


input_tensor = Input(shape=(128,32),name = 'input')
conv4= (Conv1D(64, kernel_size=5, strides=1,
padding = 'same',
name = 'conv4',
input_shape=(128,32)))(maxpool1)
output = Lambda(Maxout,name='maxout')(conv4)

model = Model(inputs=input_tensor, outputs=output)
print(model.summary())

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 128, 32) 0
_________________________________________________________________
conv4 (Conv1D) (None, 128, 64) 20544
_________________________________________________________________
maxout (Lambda) (None, 1, 32) 0
=================================================================


where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)



How can i get the shape of output in 128,32?










share|improve this question





























    0














    I am new to DL and re-coding the lasagne CNN to Keras(TF)



    the part of the layer is Conv1D then Maxout , with feature maxout



    The Maxout function removed from keras2.0



    I take reference to stack overflow and git-hub
    to write customize lambda function



    def Maxout(x, num_unit=None):
    input_shape = x.get_shape().as_list()
    ch = input_shape[-1]
    num_unit = int(ch / 2)
    assert ch is not None and ch % num_unit == 0
    x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
    x = K.backend.max(x, axis=1,keepdims=True)


    input_tensor = Input(shape=(128,32),name = 'input')
    conv4= (Conv1D(64, kernel_size=5, strides=1,
    padding = 'same',
    name = 'conv4',
    input_shape=(128,32)))(maxpool1)
    output = Lambda(Maxout,name='maxout')(conv4)

    model = Model(inputs=input_tensor, outputs=output)
    print(model.summary())

    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    input (InputLayer) (None, 128, 32) 0
    _________________________________________________________________
    conv4 (Conv1D) (None, 128, 64) 20544
    _________________________________________________________________
    maxout (Lambda) (None, 1, 32) 0
    =================================================================


    where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)



    How can i get the shape of output in 128,32?










    share|improve this question



























      0












      0








      0







      I am new to DL and re-coding the lasagne CNN to Keras(TF)



      the part of the layer is Conv1D then Maxout , with feature maxout



      The Maxout function removed from keras2.0



      I take reference to stack overflow and git-hub
      to write customize lambda function



      def Maxout(x, num_unit=None):
      input_shape = x.get_shape().as_list()
      ch = input_shape[-1]
      num_unit = int(ch / 2)
      assert ch is not None and ch % num_unit == 0
      x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
      x = K.backend.max(x, axis=1,keepdims=True)


      input_tensor = Input(shape=(128,32),name = 'input')
      conv4= (Conv1D(64, kernel_size=5, strides=1,
      padding = 'same',
      name = 'conv4',
      input_shape=(128,32)))(maxpool1)
      output = Lambda(Maxout,name='maxout')(conv4)

      model = Model(inputs=input_tensor, outputs=output)
      print(model.summary())

      _________________________________________________________________
      Layer (type) Output Shape Param #
      =================================================================
      input (InputLayer) (None, 128, 32) 0
      _________________________________________________________________
      conv4 (Conv1D) (None, 128, 64) 20544
      _________________________________________________________________
      maxout (Lambda) (None, 1, 32) 0
      =================================================================


      where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)



      How can i get the shape of output in 128,32?










      share|improve this question















      I am new to DL and re-coding the lasagne CNN to Keras(TF)



      the part of the layer is Conv1D then Maxout , with feature maxout



      The Maxout function removed from keras2.0



      I take reference to stack overflow and git-hub
      to write customize lambda function



      def Maxout(x, num_unit=None):
      input_shape = x.get_shape().as_list()
      ch = input_shape[-1]
      num_unit = int(ch / 2)
      assert ch is not None and ch % num_unit == 0
      x = K.backend.reshape(x, (-1, ch // int(num_unit) , int(num_unit)))
      x = K.backend.max(x, axis=1,keepdims=True)


      input_tensor = Input(shape=(128,32),name = 'input')
      conv4= (Conv1D(64, kernel_size=5, strides=1,
      padding = 'same',
      name = 'conv4',
      input_shape=(128,32)))(maxpool1)
      output = Lambda(Maxout,name='maxout')(conv4)

      model = Model(inputs=input_tensor, outputs=output)
      print(model.summary())

      _________________________________________________________________
      Layer (type) Output Shape Param #
      =================================================================
      input (InputLayer) (None, 128, 32) 0
      _________________________________________________________________
      conv4 (Conv1D) (None, 128, 64) 20544
      _________________________________________________________________
      maxout (Lambda) (None, 1, 32) 0
      =================================================================


      where i expect the Maxout layer from input:(None,128,64) to output:(None,128,32)



      How can i get the shape of output in 128,32?







      python keras deep-learning






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 20 at 7:59

























      asked Nov 20 at 7:08









      alan alan

      62




      62





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387898%2fhow-to-implement-maxout-activation-for-conv1d-output%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387898%2fhow-to-implement-maxout-activation-for-conv1d-output%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

          Alcedinidae

          RAC Tourist Trophy