How can prove this integral
$begingroup$
I was reading a textbook which these two equations posed . The second one was the result of the first one .
How can we say that ?
If we know :
$$int_{0^+}^{+infty} frac{sin(x)}{x} = frac{pi}{2}$$
How can we prove :
$$int_{0^+}^{+infty} left(frac{sin(x)}{x}right)^2 = frac{pi}{2}$$
Thanks in advance
real-analysis calculus integration
New contributor
$endgroup$
add a comment |
$begingroup$
I was reading a textbook which these two equations posed . The second one was the result of the first one .
How can we say that ?
If we know :
$$int_{0^+}^{+infty} frac{sin(x)}{x} = frac{pi}{2}$$
How can we prove :
$$int_{0^+}^{+infty} left(frac{sin(x)}{x}right)^2 = frac{pi}{2}$$
Thanks in advance
real-analysis calculus integration
New contributor
$endgroup$
add a comment |
$begingroup$
I was reading a textbook which these two equations posed . The second one was the result of the first one .
How can we say that ?
If we know :
$$int_{0^+}^{+infty} frac{sin(x)}{x} = frac{pi}{2}$$
How can we prove :
$$int_{0^+}^{+infty} left(frac{sin(x)}{x}right)^2 = frac{pi}{2}$$
Thanks in advance
real-analysis calculus integration
New contributor
$endgroup$
I was reading a textbook which these two equations posed . The second one was the result of the first one .
How can we say that ?
If we know :
$$int_{0^+}^{+infty} frac{sin(x)}{x} = frac{pi}{2}$$
How can we prove :
$$int_{0^+}^{+infty} left(frac{sin(x)}{x}right)^2 = frac{pi}{2}$$
Thanks in advance
real-analysis calculus integration
real-analysis calculus integration
New contributor
New contributor
edited 16 hours ago
Alan Muniz
2,5711830
2,5711830
New contributor
asked 16 hours ago
RezaReza
233
233
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Use $int_{0}^{infty} frac{sin(x)}{x} = frac{pi}{2}$ and $sin (2x)= 2 sin(x) cos(x)$ to get
$$ (*) quadint_{0}^{infty} frac{sin(x) cos (x)}{x} =frac{pi}{4}.$$
Then use integration by parts in $(*)$ to derive
$$int_{0}^{infty} frac{sin^2(x)}{x^2} = frac{pi}{2}.$$
$endgroup$
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
add a comment |
$begingroup$
$$I(a)=int_{-infty}^{+infty}dfrac{sin^2ax}{x^2}mathrm dx\ dfrac{mathrm dI}{mathrm da}=int_{-infty}^{+infty}partial_a dfrac{sin^2ax}{x^2}mathrm dx=2int_{0}^{infty}dfrac{sin 2ax}{x}mathrm dx=pi\ I(a)=pi a implies int_{0}^{infty}dfrac{sin^2x}{x^2}mathrm dx =dfrac{1}{2}I(1)=dfrac{pi}{2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Reza is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128751%2fhow-can-prove-this-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use $int_{0}^{infty} frac{sin(x)}{x} = frac{pi}{2}$ and $sin (2x)= 2 sin(x) cos(x)$ to get
$$ (*) quadint_{0}^{infty} frac{sin(x) cos (x)}{x} =frac{pi}{4}.$$
Then use integration by parts in $(*)$ to derive
$$int_{0}^{infty} frac{sin^2(x)}{x^2} = frac{pi}{2}.$$
$endgroup$
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
add a comment |
$begingroup$
Use $int_{0}^{infty} frac{sin(x)}{x} = frac{pi}{2}$ and $sin (2x)= 2 sin(x) cos(x)$ to get
$$ (*) quadint_{0}^{infty} frac{sin(x) cos (x)}{x} =frac{pi}{4}.$$
Then use integration by parts in $(*)$ to derive
$$int_{0}^{infty} frac{sin^2(x)}{x^2} = frac{pi}{2}.$$
$endgroup$
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
add a comment |
$begingroup$
Use $int_{0}^{infty} frac{sin(x)}{x} = frac{pi}{2}$ and $sin (2x)= 2 sin(x) cos(x)$ to get
$$ (*) quadint_{0}^{infty} frac{sin(x) cos (x)}{x} =frac{pi}{4}.$$
Then use integration by parts in $(*)$ to derive
$$int_{0}^{infty} frac{sin^2(x)}{x^2} = frac{pi}{2}.$$
$endgroup$
Use $int_{0}^{infty} frac{sin(x)}{x} = frac{pi}{2}$ and $sin (2x)= 2 sin(x) cos(x)$ to get
$$ (*) quadint_{0}^{infty} frac{sin(x) cos (x)}{x} =frac{pi}{4}.$$
Then use integration by parts in $(*)$ to derive
$$int_{0}^{infty} frac{sin^2(x)}{x^2} = frac{pi}{2}.$$
answered 16 hours ago
FredFred
47k1848
47k1848
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
add a comment |
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
2
2
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
I can't figure it out how you derive from (*) to answer
$endgroup$
– Reza
16 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
$begingroup$
Reza: What is an antiderivative of the function cos? Can you derive the function defined for $x> 0$ by $f(x)=frac{sin x}{x}$ (product of functions)?
$endgroup$
– FDP
14 hours ago
add a comment |
$begingroup$
$$I(a)=int_{-infty}^{+infty}dfrac{sin^2ax}{x^2}mathrm dx\ dfrac{mathrm dI}{mathrm da}=int_{-infty}^{+infty}partial_a dfrac{sin^2ax}{x^2}mathrm dx=2int_{0}^{infty}dfrac{sin 2ax}{x}mathrm dx=pi\ I(a)=pi a implies int_{0}^{infty}dfrac{sin^2x}{x^2}mathrm dx =dfrac{1}{2}I(1)=dfrac{pi}{2}$$
$endgroup$
add a comment |
$begingroup$
$$I(a)=int_{-infty}^{+infty}dfrac{sin^2ax}{x^2}mathrm dx\ dfrac{mathrm dI}{mathrm da}=int_{-infty}^{+infty}partial_a dfrac{sin^2ax}{x^2}mathrm dx=2int_{0}^{infty}dfrac{sin 2ax}{x}mathrm dx=pi\ I(a)=pi a implies int_{0}^{infty}dfrac{sin^2x}{x^2}mathrm dx =dfrac{1}{2}I(1)=dfrac{pi}{2}$$
$endgroup$
add a comment |
$begingroup$
$$I(a)=int_{-infty}^{+infty}dfrac{sin^2ax}{x^2}mathrm dx\ dfrac{mathrm dI}{mathrm da}=int_{-infty}^{+infty}partial_a dfrac{sin^2ax}{x^2}mathrm dx=2int_{0}^{infty}dfrac{sin 2ax}{x}mathrm dx=pi\ I(a)=pi a implies int_{0}^{infty}dfrac{sin^2x}{x^2}mathrm dx =dfrac{1}{2}I(1)=dfrac{pi}{2}$$
$endgroup$
$$I(a)=int_{-infty}^{+infty}dfrac{sin^2ax}{x^2}mathrm dx\ dfrac{mathrm dI}{mathrm da}=int_{-infty}^{+infty}partial_a dfrac{sin^2ax}{x^2}mathrm dx=2int_{0}^{infty}dfrac{sin 2ax}{x}mathrm dx=pi\ I(a)=pi a implies int_{0}^{infty}dfrac{sin^2x}{x^2}mathrm dx =dfrac{1}{2}I(1)=dfrac{pi}{2}$$
edited 15 hours ago
answered 16 hours ago
Paras KhoslaParas Khosla
1,410219
1,410219
add a comment |
add a comment |
Reza is a new contributor. Be nice, and check out our Code of Conduct.
Reza is a new contributor. Be nice, and check out our Code of Conduct.
Reza is a new contributor. Be nice, and check out our Code of Conduct.
Reza is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3128751%2fhow-can-prove-this-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown