Loss value constant and Accuracy fluctuating between 0, 0.5 and 1
I am beginner to Tensorflow, and have written the following code for classification of Cats and Dogs using the Kaggle dataset. I have tinkered with the code used on IBM's edX course, and tried to create it for the Cats and Dogs dataset image classifier.
import csv
import re
import matplotlib.pyplot as plt
import datetime
import tensorflow as tf
import numpy as np
import random as rd
import os
from PIL import Image
import random
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
os.chdir("C:\Users\dell\Documents\PetImages")
lst = os.listdir()
train_cat =
train_dog =
train_x =
train_y =
count = 0
for anim in lst:
os.chdir(anim)
for img in os.listdir():
image = Image.open(img).convert('L')
width, height = image.size
scale_factor = max(width, height)/100
image =image.resize((int(width/scale_factor), int(height/scale_factor)))
imgarr = np.asarray(image)
zero_array = np.zeros((100,100))
zero_array[:imgarr.shape[0], :imgarr.shape[1]] = imgarr
imgarr = zero_array
#imgarr = tf.keras.utils.normalize(imgarr, axis = 1, order=2)
imgarr = (imgarr)/255.0
if anim == "Cat":
imgarr = imgarr.flatten()
train_cat.append(imgarr)
else :
imgarr = imgarr.flatten()
train_dog.append(imgarr)
#imgplot = plt.imshow(imgarr)
#print(imgarr)
#plt.show()
count+=1
if count == 500:
count = 0
print()
break
print(str(count)+" Files Read.", sep=' ', end='r', flush=True)
os.chdir('../')
print(len(train_cat))
label_cat = [[1,0] for i in train_cat]
label_dog = [[0,1] for i in train_dog]
train_x.extend(train_cat)
train_x.extend(train_dog)
train_y.extend(label_cat)
train_y.extend(label_dog)
print(len(train_x))
width = 100
height = 100
flat = width * height
class_output = 2
x = tf.placeholder(tf.float32, shape=[None, flat])
y_ = tf.placeholder(tf.float32, shape=[None, class_output])
x_image = tf.reshape(x, [-1,100,100,1])
print(x_image)
W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
convolve1 = tf.nn.conv2d(x_image, W_conv1, strides=[1,1,1,1], padding="SAME") + b_conv1
h_conv1 = tf.nn.relu(convolve1)
conv1 = tf.nn.max_pool(h_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv1)
W_conv2 = tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
convolve2 = tf.nn.conv2d(conv1, W_conv2, strides=[1,1,1,1], padding="SAME") + b_conv2
h_conv2 = tf.nn.relu(convolve2)
conv2 = tf.nn.max_pool(h_conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv2)
layer2_matrix = tf.reshape(conv2, [-1, conv2.shape[1] * conv2.shape[2] * 64])
W_fc1 = tf.Variable(tf.truncated_normal([int(layer2_matrix.shape[1]), 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
fc1 = tf.matmul(layer2_matrix, W_fc1)+ b_fc1
h_fc1 = tf.nn.relu(fc1)
print(h_fc1)
keep_prob = tf.placeholder(tf.float32)
layer_drop = tf.nn.dropout(h_fc1, keep_prob)
print(layer_drop)
W_fc2 = tf.Variable(tf.truncated_normal([1024, class_output], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[class_output]))
fc2 = tf.matmul(layer_drop, W_fc2)+ b_fc2
h_fc2 = tf.nn.relu(fc2)
print(h_fc2)
y_CNN = tf.nn.softmax(h_fc2)
print(y_CNN)
print(train_y)
print(y_*tf.log(y_CNN))
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_CNN)))
train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_CNN, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
d = list(zip(train_x,train_y))
random.shuffle(d)
train_x, train_y = zip(*d)
print(train_y)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
n_epochs = 20
for n in range(2,1000):
batch = (train_x[n-2:n], train_y[n-2:n])
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
loss = cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g, loss %g"%(n, float(train_accuracy), float(loss)))
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob: 0.5})
The problem is that when I run the program, The loss first increases and then decreases to get to a constant value. While the accuracy only fluctuates between three values, 0, 0.5 and 1. Below is the image for same.
Can anyone please help me with this?
python tensorflow deep-learning kaggle
add a comment |
I am beginner to Tensorflow, and have written the following code for classification of Cats and Dogs using the Kaggle dataset. I have tinkered with the code used on IBM's edX course, and tried to create it for the Cats and Dogs dataset image classifier.
import csv
import re
import matplotlib.pyplot as plt
import datetime
import tensorflow as tf
import numpy as np
import random as rd
import os
from PIL import Image
import random
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
os.chdir("C:\Users\dell\Documents\PetImages")
lst = os.listdir()
train_cat =
train_dog =
train_x =
train_y =
count = 0
for anim in lst:
os.chdir(anim)
for img in os.listdir():
image = Image.open(img).convert('L')
width, height = image.size
scale_factor = max(width, height)/100
image =image.resize((int(width/scale_factor), int(height/scale_factor)))
imgarr = np.asarray(image)
zero_array = np.zeros((100,100))
zero_array[:imgarr.shape[0], :imgarr.shape[1]] = imgarr
imgarr = zero_array
#imgarr = tf.keras.utils.normalize(imgarr, axis = 1, order=2)
imgarr = (imgarr)/255.0
if anim == "Cat":
imgarr = imgarr.flatten()
train_cat.append(imgarr)
else :
imgarr = imgarr.flatten()
train_dog.append(imgarr)
#imgplot = plt.imshow(imgarr)
#print(imgarr)
#plt.show()
count+=1
if count == 500:
count = 0
print()
break
print(str(count)+" Files Read.", sep=' ', end='r', flush=True)
os.chdir('../')
print(len(train_cat))
label_cat = [[1,0] for i in train_cat]
label_dog = [[0,1] for i in train_dog]
train_x.extend(train_cat)
train_x.extend(train_dog)
train_y.extend(label_cat)
train_y.extend(label_dog)
print(len(train_x))
width = 100
height = 100
flat = width * height
class_output = 2
x = tf.placeholder(tf.float32, shape=[None, flat])
y_ = tf.placeholder(tf.float32, shape=[None, class_output])
x_image = tf.reshape(x, [-1,100,100,1])
print(x_image)
W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
convolve1 = tf.nn.conv2d(x_image, W_conv1, strides=[1,1,1,1], padding="SAME") + b_conv1
h_conv1 = tf.nn.relu(convolve1)
conv1 = tf.nn.max_pool(h_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv1)
W_conv2 = tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
convolve2 = tf.nn.conv2d(conv1, W_conv2, strides=[1,1,1,1], padding="SAME") + b_conv2
h_conv2 = tf.nn.relu(convolve2)
conv2 = tf.nn.max_pool(h_conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv2)
layer2_matrix = tf.reshape(conv2, [-1, conv2.shape[1] * conv2.shape[2] * 64])
W_fc1 = tf.Variable(tf.truncated_normal([int(layer2_matrix.shape[1]), 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
fc1 = tf.matmul(layer2_matrix, W_fc1)+ b_fc1
h_fc1 = tf.nn.relu(fc1)
print(h_fc1)
keep_prob = tf.placeholder(tf.float32)
layer_drop = tf.nn.dropout(h_fc1, keep_prob)
print(layer_drop)
W_fc2 = tf.Variable(tf.truncated_normal([1024, class_output], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[class_output]))
fc2 = tf.matmul(layer_drop, W_fc2)+ b_fc2
h_fc2 = tf.nn.relu(fc2)
print(h_fc2)
y_CNN = tf.nn.softmax(h_fc2)
print(y_CNN)
print(train_y)
print(y_*tf.log(y_CNN))
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_CNN)))
train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_CNN, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
d = list(zip(train_x,train_y))
random.shuffle(d)
train_x, train_y = zip(*d)
print(train_y)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
n_epochs = 20
for n in range(2,1000):
batch = (train_x[n-2:n], train_y[n-2:n])
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
loss = cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g, loss %g"%(n, float(train_accuracy), float(loss)))
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob: 0.5})
The problem is that when I run the program, The loss first increases and then decreases to get to a constant value. While the accuracy only fluctuates between three values, 0, 0.5 and 1. Below is the image for same.
Can anyone please help me with this?
python tensorflow deep-learning kaggle
add a comment |
I am beginner to Tensorflow, and have written the following code for classification of Cats and Dogs using the Kaggle dataset. I have tinkered with the code used on IBM's edX course, and tried to create it for the Cats and Dogs dataset image classifier.
import csv
import re
import matplotlib.pyplot as plt
import datetime
import tensorflow as tf
import numpy as np
import random as rd
import os
from PIL import Image
import random
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
os.chdir("C:\Users\dell\Documents\PetImages")
lst = os.listdir()
train_cat =
train_dog =
train_x =
train_y =
count = 0
for anim in lst:
os.chdir(anim)
for img in os.listdir():
image = Image.open(img).convert('L')
width, height = image.size
scale_factor = max(width, height)/100
image =image.resize((int(width/scale_factor), int(height/scale_factor)))
imgarr = np.asarray(image)
zero_array = np.zeros((100,100))
zero_array[:imgarr.shape[0], :imgarr.shape[1]] = imgarr
imgarr = zero_array
#imgarr = tf.keras.utils.normalize(imgarr, axis = 1, order=2)
imgarr = (imgarr)/255.0
if anim == "Cat":
imgarr = imgarr.flatten()
train_cat.append(imgarr)
else :
imgarr = imgarr.flatten()
train_dog.append(imgarr)
#imgplot = plt.imshow(imgarr)
#print(imgarr)
#plt.show()
count+=1
if count == 500:
count = 0
print()
break
print(str(count)+" Files Read.", sep=' ', end='r', flush=True)
os.chdir('../')
print(len(train_cat))
label_cat = [[1,0] for i in train_cat]
label_dog = [[0,1] for i in train_dog]
train_x.extend(train_cat)
train_x.extend(train_dog)
train_y.extend(label_cat)
train_y.extend(label_dog)
print(len(train_x))
width = 100
height = 100
flat = width * height
class_output = 2
x = tf.placeholder(tf.float32, shape=[None, flat])
y_ = tf.placeholder(tf.float32, shape=[None, class_output])
x_image = tf.reshape(x, [-1,100,100,1])
print(x_image)
W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
convolve1 = tf.nn.conv2d(x_image, W_conv1, strides=[1,1,1,1], padding="SAME") + b_conv1
h_conv1 = tf.nn.relu(convolve1)
conv1 = tf.nn.max_pool(h_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv1)
W_conv2 = tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
convolve2 = tf.nn.conv2d(conv1, W_conv2, strides=[1,1,1,1], padding="SAME") + b_conv2
h_conv2 = tf.nn.relu(convolve2)
conv2 = tf.nn.max_pool(h_conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv2)
layer2_matrix = tf.reshape(conv2, [-1, conv2.shape[1] * conv2.shape[2] * 64])
W_fc1 = tf.Variable(tf.truncated_normal([int(layer2_matrix.shape[1]), 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
fc1 = tf.matmul(layer2_matrix, W_fc1)+ b_fc1
h_fc1 = tf.nn.relu(fc1)
print(h_fc1)
keep_prob = tf.placeholder(tf.float32)
layer_drop = tf.nn.dropout(h_fc1, keep_prob)
print(layer_drop)
W_fc2 = tf.Variable(tf.truncated_normal([1024, class_output], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[class_output]))
fc2 = tf.matmul(layer_drop, W_fc2)+ b_fc2
h_fc2 = tf.nn.relu(fc2)
print(h_fc2)
y_CNN = tf.nn.softmax(h_fc2)
print(y_CNN)
print(train_y)
print(y_*tf.log(y_CNN))
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_CNN)))
train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_CNN, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
d = list(zip(train_x,train_y))
random.shuffle(d)
train_x, train_y = zip(*d)
print(train_y)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
n_epochs = 20
for n in range(2,1000):
batch = (train_x[n-2:n], train_y[n-2:n])
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
loss = cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g, loss %g"%(n, float(train_accuracy), float(loss)))
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob: 0.5})
The problem is that when I run the program, The loss first increases and then decreases to get to a constant value. While the accuracy only fluctuates between three values, 0, 0.5 and 1. Below is the image for same.
Can anyone please help me with this?
python tensorflow deep-learning kaggle
I am beginner to Tensorflow, and have written the following code for classification of Cats and Dogs using the Kaggle dataset. I have tinkered with the code used on IBM's edX course, and tried to create it for the Cats and Dogs dataset image classifier.
import csv
import re
import matplotlib.pyplot as plt
import datetime
import tensorflow as tf
import numpy as np
import random as rd
import os
from PIL import Image
import random
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
os.chdir("C:\Users\dell\Documents\PetImages")
lst = os.listdir()
train_cat =
train_dog =
train_x =
train_y =
count = 0
for anim in lst:
os.chdir(anim)
for img in os.listdir():
image = Image.open(img).convert('L')
width, height = image.size
scale_factor = max(width, height)/100
image =image.resize((int(width/scale_factor), int(height/scale_factor)))
imgarr = np.asarray(image)
zero_array = np.zeros((100,100))
zero_array[:imgarr.shape[0], :imgarr.shape[1]] = imgarr
imgarr = zero_array
#imgarr = tf.keras.utils.normalize(imgarr, axis = 1, order=2)
imgarr = (imgarr)/255.0
if anim == "Cat":
imgarr = imgarr.flatten()
train_cat.append(imgarr)
else :
imgarr = imgarr.flatten()
train_dog.append(imgarr)
#imgplot = plt.imshow(imgarr)
#print(imgarr)
#plt.show()
count+=1
if count == 500:
count = 0
print()
break
print(str(count)+" Files Read.", sep=' ', end='r', flush=True)
os.chdir('../')
print(len(train_cat))
label_cat = [[1,0] for i in train_cat]
label_dog = [[0,1] for i in train_dog]
train_x.extend(train_cat)
train_x.extend(train_dog)
train_y.extend(label_cat)
train_y.extend(label_dog)
print(len(train_x))
width = 100
height = 100
flat = width * height
class_output = 2
x = tf.placeholder(tf.float32, shape=[None, flat])
y_ = tf.placeholder(tf.float32, shape=[None, class_output])
x_image = tf.reshape(x, [-1,100,100,1])
print(x_image)
W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
convolve1 = tf.nn.conv2d(x_image, W_conv1, strides=[1,1,1,1], padding="SAME") + b_conv1
h_conv1 = tf.nn.relu(convolve1)
conv1 = tf.nn.max_pool(h_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv1)
W_conv2 = tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
convolve2 = tf.nn.conv2d(conv1, W_conv2, strides=[1,1,1,1], padding="SAME") + b_conv2
h_conv2 = tf.nn.relu(convolve2)
conv2 = tf.nn.max_pool(h_conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
print(conv2)
layer2_matrix = tf.reshape(conv2, [-1, conv2.shape[1] * conv2.shape[2] * 64])
W_fc1 = tf.Variable(tf.truncated_normal([int(layer2_matrix.shape[1]), 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
fc1 = tf.matmul(layer2_matrix, W_fc1)+ b_fc1
h_fc1 = tf.nn.relu(fc1)
print(h_fc1)
keep_prob = tf.placeholder(tf.float32)
layer_drop = tf.nn.dropout(h_fc1, keep_prob)
print(layer_drop)
W_fc2 = tf.Variable(tf.truncated_normal([1024, class_output], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[class_output]))
fc2 = tf.matmul(layer_drop, W_fc2)+ b_fc2
h_fc2 = tf.nn.relu(fc2)
print(h_fc2)
y_CNN = tf.nn.softmax(h_fc2)
print(y_CNN)
print(train_y)
print(y_*tf.log(y_CNN))
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_CNN)))
train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_CNN, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
d = list(zip(train_x,train_y))
random.shuffle(d)
train_x, train_y = zip(*d)
print(train_y)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
n_epochs = 20
for n in range(2,1000):
batch = (train_x[n-2:n], train_y[n-2:n])
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
loss = cross_entropy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g, loss %g"%(n, float(train_accuracy), float(loss)))
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob: 0.5})
The problem is that when I run the program, The loss first increases and then decreases to get to a constant value. While the accuracy only fluctuates between three values, 0, 0.5 and 1. Below is the image for same.
Can anyone please help me with this?
python tensorflow deep-learning kaggle
python tensorflow deep-learning kaggle
edited Nov 23 '18 at 4:40
praveen londhe
asked Nov 22 '18 at 18:30
praveen londhepraveen londhe
195
195
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53436487%2floss-value-constant-and-accuracy-fluctuating-between-0-0-5-and-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53436487%2floss-value-constant-and-accuracy-fluctuating-between-0-0-5-and-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown