tensorflow run any opmtimizer get exit code 139 interrupted by signal 11: SIGSEGV
up vote
0
down vote
favorite
i run the coed with rtx2080 ,using docker.
Once i call sess.run(train_step,feed_dick={}),i get "the Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)" .But if i run it with cpu ,it works well.
i have no idea what happened .
Using TensorFlow backend.
2018-11-18 13:19:12.025412: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
FMA 2018-11-18 13:19:12.132999: I
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful
NUMA node read from SysFS had negative value (-1), but there must be
at least one NUMA node, so returning NUMA node zero 2018-11-18
13:19:12.133566: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0
with properties: name: GeForce RTX 2080 major: 7 minor: 5
memoryClockRate(GHz): 1.8 pciBusID: 0000:06:00.0 totalMemory: 7.76GiB
freeMemory: 7.46GiB 2018-11-18 13:19:12.133584: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible
gpu devices: 0 2018-11-18 13:19:12.394726: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device
interconnect StreamExecutor with strength 1 edge matrix: 2018-11-18
13:19:12.394763: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2018-11-18 13:19:12.394770: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2018-11-18 13:19:12.394963: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created
TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
7172 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080,
pci bus id: 0000:06:00.0, compute capability: 7.5)
import tensorflow as tf
import numpy as np
import pandas as pd
from tensorflow.contrib.framework import arg_scope
from keras.layers import Dense, Activation
import pickle
from tensorflow.contrib.layers import batch_norm, flatten
train_data = {b'data': , b'labels': }
# 加载训练数据
for i in range(5):
with open("data/cifar-10/data_batch_" + str(i + 1), mode='rb') as file:
data = pickle.load(file, encoding='bytes')
train_data[b'data'] += list(data[b'data'])
train_data[b'labels'] += data[b'labels']
# 加载测试数据
with open("data/cifar-10/test_batch", mode='rb') as file:
test_data = pickle.load(file, encoding='bytes')
# 定义一些变量
NUM_LABLES = 10 # 分类结果为10类
BATCH_SIZE = 64 # 每次训练batch数
sess = tf.InteractiveSession()
# 权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=2 / shape[0] / shape[1] / shape[2])
# initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
# 卷积层偏置初始化为常数0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积操作,卷积步长为1. padding = 'SAME' 表示全0填充
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义最大池化操作,尺寸为2,步长为2,全0填充
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 对输入进行占位操作,输入为BATCH*3072向量,输出为BATCH*10向量
x = tf.placeholder(tf.float32, [None, 3072])
y_ = tf.placeholder(tf.float32, [None, NUM_LABLES])
# 对输入进行reshape,转换成3*32*32格式
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 转置操作,转换成滤波器做卷积所需格式:32*32*3,32*32为其二维卷积操作维度
x_image = tf.transpose(x_image, [0, 2, 3, 1])
# 第一层卷积,滤波器参数3*3*3, 32个
#bn_layer1 = Batch_Normalization(x_image, istraining, "bn1")
W_conv1 = weight_variable([3, 3, 3, 32])
b_conv1 = bias_variable([32])
h_conv1 = conv2d(x_image, W_conv1) + b_conv1
#h_conv1 = tf.layers.dropout(inputs=h_conv1, rate=droprate, training=istraining)
h_relu1 = tf.nn.relu(h_conv1) # 卷积
h_pool1 = max_pool_2x2(h_relu1) # 池化
h_pool4 = tf.reshape(h_pool1,[-1,16*16*32])
bn_layer5_flat = tf.layers.dense(inputs=h_pool4, units=10, name='linear')
cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=y_, logits=bn_layer5_flat,
reduction=tf.losses.Reduction.MEAN)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(bn_layer5_flat, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
x_train = np.array(train_data[b'data']) / 255
y_train = np.array(pd.get_dummies(train_data[b'labels']))
x_test = test_data[b'data'] / 255
y_test = np.array(pd.get_dummies(test_data[b'labels']))
eplr = 1e-4;
for i in range(20000):
if i == 20000 * 0.5 or i == 20000 * 0.75:
eplr = eplr / 10
start = i * BATCH_SIZE % (50000 - BATCH_SIZE)
sess.run(train_step,feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE],
})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: x_test[0: 200],
y_: y_test[0: 200]
})
loss_value = cross_entropy.eval(feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE]
})
print("step %d, trainning accuracy, %g loss %g" % (i, train_accuracy, loss_value))
test_accuracy = accuracy.eval(feed_dict={x: x_test, y_: y_test})
print("test accuracy %g" % test_accuracy)
tensorflow sigsegv
add a comment |
up vote
0
down vote
favorite
i run the coed with rtx2080 ,using docker.
Once i call sess.run(train_step,feed_dick={}),i get "the Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)" .But if i run it with cpu ,it works well.
i have no idea what happened .
Using TensorFlow backend.
2018-11-18 13:19:12.025412: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
FMA 2018-11-18 13:19:12.132999: I
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful
NUMA node read from SysFS had negative value (-1), but there must be
at least one NUMA node, so returning NUMA node zero 2018-11-18
13:19:12.133566: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0
with properties: name: GeForce RTX 2080 major: 7 minor: 5
memoryClockRate(GHz): 1.8 pciBusID: 0000:06:00.0 totalMemory: 7.76GiB
freeMemory: 7.46GiB 2018-11-18 13:19:12.133584: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible
gpu devices: 0 2018-11-18 13:19:12.394726: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device
interconnect StreamExecutor with strength 1 edge matrix: 2018-11-18
13:19:12.394763: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2018-11-18 13:19:12.394770: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2018-11-18 13:19:12.394963: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created
TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
7172 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080,
pci bus id: 0000:06:00.0, compute capability: 7.5)
import tensorflow as tf
import numpy as np
import pandas as pd
from tensorflow.contrib.framework import arg_scope
from keras.layers import Dense, Activation
import pickle
from tensorflow.contrib.layers import batch_norm, flatten
train_data = {b'data': , b'labels': }
# 加载训练数据
for i in range(5):
with open("data/cifar-10/data_batch_" + str(i + 1), mode='rb') as file:
data = pickle.load(file, encoding='bytes')
train_data[b'data'] += list(data[b'data'])
train_data[b'labels'] += data[b'labels']
# 加载测试数据
with open("data/cifar-10/test_batch", mode='rb') as file:
test_data = pickle.load(file, encoding='bytes')
# 定义一些变量
NUM_LABLES = 10 # 分类结果为10类
BATCH_SIZE = 64 # 每次训练batch数
sess = tf.InteractiveSession()
# 权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=2 / shape[0] / shape[1] / shape[2])
# initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
# 卷积层偏置初始化为常数0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积操作,卷积步长为1. padding = 'SAME' 表示全0填充
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义最大池化操作,尺寸为2,步长为2,全0填充
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 对输入进行占位操作,输入为BATCH*3072向量,输出为BATCH*10向量
x = tf.placeholder(tf.float32, [None, 3072])
y_ = tf.placeholder(tf.float32, [None, NUM_LABLES])
# 对输入进行reshape,转换成3*32*32格式
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 转置操作,转换成滤波器做卷积所需格式:32*32*3,32*32为其二维卷积操作维度
x_image = tf.transpose(x_image, [0, 2, 3, 1])
# 第一层卷积,滤波器参数3*3*3, 32个
#bn_layer1 = Batch_Normalization(x_image, istraining, "bn1")
W_conv1 = weight_variable([3, 3, 3, 32])
b_conv1 = bias_variable([32])
h_conv1 = conv2d(x_image, W_conv1) + b_conv1
#h_conv1 = tf.layers.dropout(inputs=h_conv1, rate=droprate, training=istraining)
h_relu1 = tf.nn.relu(h_conv1) # 卷积
h_pool1 = max_pool_2x2(h_relu1) # 池化
h_pool4 = tf.reshape(h_pool1,[-1,16*16*32])
bn_layer5_flat = tf.layers.dense(inputs=h_pool4, units=10, name='linear')
cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=y_, logits=bn_layer5_flat,
reduction=tf.losses.Reduction.MEAN)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(bn_layer5_flat, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
x_train = np.array(train_data[b'data']) / 255
y_train = np.array(pd.get_dummies(train_data[b'labels']))
x_test = test_data[b'data'] / 255
y_test = np.array(pd.get_dummies(test_data[b'labels']))
eplr = 1e-4;
for i in range(20000):
if i == 20000 * 0.5 or i == 20000 * 0.75:
eplr = eplr / 10
start = i * BATCH_SIZE % (50000 - BATCH_SIZE)
sess.run(train_step,feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE],
})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: x_test[0: 200],
y_: y_test[0: 200]
})
loss_value = cross_entropy.eval(feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE]
})
print("step %d, trainning accuracy, %g loss %g" % (i, train_accuracy, loss_value))
test_accuracy = accuracy.eval(feed_dict={x: x_test, y_: y_test})
print("test accuracy %g" % test_accuracy)
tensorflow sigsegv
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
i run the coed with rtx2080 ,using docker.
Once i call sess.run(train_step,feed_dick={}),i get "the Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)" .But if i run it with cpu ,it works well.
i have no idea what happened .
Using TensorFlow backend.
2018-11-18 13:19:12.025412: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
FMA 2018-11-18 13:19:12.132999: I
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful
NUMA node read from SysFS had negative value (-1), but there must be
at least one NUMA node, so returning NUMA node zero 2018-11-18
13:19:12.133566: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0
with properties: name: GeForce RTX 2080 major: 7 minor: 5
memoryClockRate(GHz): 1.8 pciBusID: 0000:06:00.0 totalMemory: 7.76GiB
freeMemory: 7.46GiB 2018-11-18 13:19:12.133584: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible
gpu devices: 0 2018-11-18 13:19:12.394726: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device
interconnect StreamExecutor with strength 1 edge matrix: 2018-11-18
13:19:12.394763: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2018-11-18 13:19:12.394770: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2018-11-18 13:19:12.394963: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created
TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
7172 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080,
pci bus id: 0000:06:00.0, compute capability: 7.5)
import tensorflow as tf
import numpy as np
import pandas as pd
from tensorflow.contrib.framework import arg_scope
from keras.layers import Dense, Activation
import pickle
from tensorflow.contrib.layers import batch_norm, flatten
train_data = {b'data': , b'labels': }
# 加载训练数据
for i in range(5):
with open("data/cifar-10/data_batch_" + str(i + 1), mode='rb') as file:
data = pickle.load(file, encoding='bytes')
train_data[b'data'] += list(data[b'data'])
train_data[b'labels'] += data[b'labels']
# 加载测试数据
with open("data/cifar-10/test_batch", mode='rb') as file:
test_data = pickle.load(file, encoding='bytes')
# 定义一些变量
NUM_LABLES = 10 # 分类结果为10类
BATCH_SIZE = 64 # 每次训练batch数
sess = tf.InteractiveSession()
# 权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=2 / shape[0] / shape[1] / shape[2])
# initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
# 卷积层偏置初始化为常数0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积操作,卷积步长为1. padding = 'SAME' 表示全0填充
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义最大池化操作,尺寸为2,步长为2,全0填充
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 对输入进行占位操作,输入为BATCH*3072向量,输出为BATCH*10向量
x = tf.placeholder(tf.float32, [None, 3072])
y_ = tf.placeholder(tf.float32, [None, NUM_LABLES])
# 对输入进行reshape,转换成3*32*32格式
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 转置操作,转换成滤波器做卷积所需格式:32*32*3,32*32为其二维卷积操作维度
x_image = tf.transpose(x_image, [0, 2, 3, 1])
# 第一层卷积,滤波器参数3*3*3, 32个
#bn_layer1 = Batch_Normalization(x_image, istraining, "bn1")
W_conv1 = weight_variable([3, 3, 3, 32])
b_conv1 = bias_variable([32])
h_conv1 = conv2d(x_image, W_conv1) + b_conv1
#h_conv1 = tf.layers.dropout(inputs=h_conv1, rate=droprate, training=istraining)
h_relu1 = tf.nn.relu(h_conv1) # 卷积
h_pool1 = max_pool_2x2(h_relu1) # 池化
h_pool4 = tf.reshape(h_pool1,[-1,16*16*32])
bn_layer5_flat = tf.layers.dense(inputs=h_pool4, units=10, name='linear')
cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=y_, logits=bn_layer5_flat,
reduction=tf.losses.Reduction.MEAN)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(bn_layer5_flat, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
x_train = np.array(train_data[b'data']) / 255
y_train = np.array(pd.get_dummies(train_data[b'labels']))
x_test = test_data[b'data'] / 255
y_test = np.array(pd.get_dummies(test_data[b'labels']))
eplr = 1e-4;
for i in range(20000):
if i == 20000 * 0.5 or i == 20000 * 0.75:
eplr = eplr / 10
start = i * BATCH_SIZE % (50000 - BATCH_SIZE)
sess.run(train_step,feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE],
})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: x_test[0: 200],
y_: y_test[0: 200]
})
loss_value = cross_entropy.eval(feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE]
})
print("step %d, trainning accuracy, %g loss %g" % (i, train_accuracy, loss_value))
test_accuracy = accuracy.eval(feed_dict={x: x_test, y_: y_test})
print("test accuracy %g" % test_accuracy)
tensorflow sigsegv
i run the coed with rtx2080 ,using docker.
Once i call sess.run(train_step,feed_dick={}),i get "the Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)" .But if i run it with cpu ,it works well.
i have no idea what happened .
Using TensorFlow backend.
2018-11-18 13:19:12.025412: I
tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
FMA 2018-11-18 13:19:12.132999: I
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful
NUMA node read from SysFS had negative value (-1), but there must be
at least one NUMA node, so returning NUMA node zero 2018-11-18
13:19:12.133566: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0
with properties: name: GeForce RTX 2080 major: 7 minor: 5
memoryClockRate(GHz): 1.8 pciBusID: 0000:06:00.0 totalMemory: 7.76GiB
freeMemory: 7.46GiB 2018-11-18 13:19:12.133584: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible
gpu devices: 0 2018-11-18 13:19:12.394726: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device
interconnect StreamExecutor with strength 1 edge matrix: 2018-11-18
13:19:12.394763: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2018-11-18 13:19:12.394770: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2018-11-18 13:19:12.394963: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created
TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
7172 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080,
pci bus id: 0000:06:00.0, compute capability: 7.5)
import tensorflow as tf
import numpy as np
import pandas as pd
from tensorflow.contrib.framework import arg_scope
from keras.layers import Dense, Activation
import pickle
from tensorflow.contrib.layers import batch_norm, flatten
train_data = {b'data': , b'labels': }
# 加载训练数据
for i in range(5):
with open("data/cifar-10/data_batch_" + str(i + 1), mode='rb') as file:
data = pickle.load(file, encoding='bytes')
train_data[b'data'] += list(data[b'data'])
train_data[b'labels'] += data[b'labels']
# 加载测试数据
with open("data/cifar-10/test_batch", mode='rb') as file:
test_data = pickle.load(file, encoding='bytes')
# 定义一些变量
NUM_LABLES = 10 # 分类结果为10类
BATCH_SIZE = 64 # 每次训练batch数
sess = tf.InteractiveSession()
# 权重初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=2 / shape[0] / shape[1] / shape[2])
# initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
# 卷积层偏置初始化为常数0.1
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积操作,卷积步长为1. padding = 'SAME' 表示全0填充
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义最大池化操作,尺寸为2,步长为2,全0填充
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 对输入进行占位操作,输入为BATCH*3072向量,输出为BATCH*10向量
x = tf.placeholder(tf.float32, [None, 3072])
y_ = tf.placeholder(tf.float32, [None, NUM_LABLES])
# 对输入进行reshape,转换成3*32*32格式
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 转置操作,转换成滤波器做卷积所需格式:32*32*3,32*32为其二维卷积操作维度
x_image = tf.transpose(x_image, [0, 2, 3, 1])
# 第一层卷积,滤波器参数3*3*3, 32个
#bn_layer1 = Batch_Normalization(x_image, istraining, "bn1")
W_conv1 = weight_variable([3, 3, 3, 32])
b_conv1 = bias_variable([32])
h_conv1 = conv2d(x_image, W_conv1) + b_conv1
#h_conv1 = tf.layers.dropout(inputs=h_conv1, rate=droprate, training=istraining)
h_relu1 = tf.nn.relu(h_conv1) # 卷积
h_pool1 = max_pool_2x2(h_relu1) # 池化
h_pool4 = tf.reshape(h_pool1,[-1,16*16*32])
bn_layer5_flat = tf.layers.dense(inputs=h_pool4, units=10, name='linear')
cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=y_, logits=bn_layer5_flat,
reduction=tf.losses.Reduction.MEAN)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(bn_layer5_flat, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
x_train = np.array(train_data[b'data']) / 255
y_train = np.array(pd.get_dummies(train_data[b'labels']))
x_test = test_data[b'data'] / 255
y_test = np.array(pd.get_dummies(test_data[b'labels']))
eplr = 1e-4;
for i in range(20000):
if i == 20000 * 0.5 or i == 20000 * 0.75:
eplr = eplr / 10
start = i * BATCH_SIZE % (50000 - BATCH_SIZE)
sess.run(train_step,feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE],
})
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: x_test[0: 200],
y_: y_test[0: 200]
})
loss_value = cross_entropy.eval(feed_dict={x: x_train[start: start + BATCH_SIZE],
y_: y_train[start: start + BATCH_SIZE]
})
print("step %d, trainning accuracy, %g loss %g" % (i, train_accuracy, loss_value))
test_accuracy = accuracy.eval(feed_dict={x: x_test, y_: y_test})
print("test accuracy %g" % test_accuracy)
tensorflow sigsegv
tensorflow sigsegv
edited Nov 19 at 6:48
Kzrystof
1,72621221
1,72621221
asked Nov 18 at 13:32
先生林
12
12
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53361417%2ftensorflow-run-any-opmtimizer-get-exit-code-139-interrupted-by-signal-11-sigseg%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown