Lebesgue measure: $limlimits_{n to infty} n cdot m(S_n)=0$ where $S_n={x in E mid |f(x)|geq n} $
up vote
2
down vote
favorite
Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$
We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.
measure-theory lebesgue-integral lebesgue-measure
New contributor
add a comment |
up vote
2
down vote
favorite
Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$
We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.
measure-theory lebesgue-integral lebesgue-measure
New contributor
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$
We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.
measure-theory lebesgue-integral lebesgue-measure
New contributor
Im looking to show that if $f$ is a Lebesgue integrable function on $E$ and if $$S_n={x in E mid |f(x)|geq n} $$ Then $$lim_{n to infty} n cdot m(S_n)=0 $$
We proved the Dominated convergence theorem, continuity from above, continuity from below, and a few other basic theorems from measure theory and Lebesgue theory. I'm not sure how to approach this type of problem since its not clear to be why this is important or how it relates to these topics.
measure-theory lebesgue-integral lebesgue-measure
measure-theory lebesgue-integral lebesgue-measure
New contributor
New contributor
edited 2 days ago
Martin Sleziak
44.4k7115268
44.4k7115268
New contributor
asked 2 days ago
Scott Payne
133
133
New contributor
New contributor
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago
add a comment |
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$
As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$
where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$
As the LHS is nonnegative, this gives us the desired result.
add a comment |
up vote
3
down vote
Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$
As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$
where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$
As the LHS is nonnegative, this gives us the desired result.
add a comment |
up vote
3
down vote
accepted
Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$
As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$
where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$
As the LHS is nonnegative, this gives us the desired result.
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$
As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$
where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$
As the LHS is nonnegative, this gives us the desired result.
Observe that
$$begin{aligned}
int_E |f| &= int_{S_n} |f| + int_{E setminus S_n} |f| \
&geq int_{S_n} n + int_{E setminus S_n} |f| \
&= ncdot m(S_n) + int_{E setminus S_n} |f| \
end{aligned}$$
As $int_E |f|$ is finite, so is $int_{E setminus S_n} |f|$, so we can subtract the latter from both sides to obtain
$$begin{aligned}
ncdot m(S_n) &leq int_E |f| - int_{E setminus S_n} |f| \
&= int_{S_n} |f| \
&= int_E |f| chi_{S_n} \
end{aligned}$$
where $chi_{S_n}$ is the characteristic function of $S_n$. The integrand on the RHS is dominated by the integrable function $|f|$ and converges a.e. to zero, hence by the dominated convergence theorem we have
$$begin{aligned}
lim_{n to infty}ncdot m(S_n) &leq lim_{n to infty}int_E |f| chi_{S_n} \
&= int_E lim_{n to infty} |f| chi_{S_n} \
&= 0
end{aligned}$$
As the LHS is nonnegative, this gives us the desired result.
answered 2 days ago
Bungo
13.6k22147
13.6k22147
add a comment |
add a comment |
up vote
3
down vote
Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
add a comment |
up vote
3
down vote
Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
add a comment |
up vote
3
down vote
up vote
3
down vote
Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.
Note that $n.m(S_n)=int_{S_n}nleqint_{S_n}|f|$ for every $n$ and $lim_{nto+infty}int_{S_n}|f|=0$ because $f$ is integrable. So the proposition follows.
answered 2 days ago
Dante Grevino
5367
5367
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
add a comment |
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
What theorem do we need to know to show that $lim_{n to infty} int_{S_n} |f|=0$? Is this because the measure of the $S_n$ is going to zero?
– Scott Payne
2 days ago
1
1
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
Lebesgue's Dominated Convergence Theorem: Note that $int_{S_n}|f|=int_E|f|chi_{S_n}$, $|f|chi_{S_n}$ converges to $0$ a.e. and it is dominated by $|f|$, which is integrable by hypothesis.
– Dante Grevino
2 days ago
add a comment |
Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.
Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.
Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.
Scott Payne is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015395%2flebesgue-measure-lim-limits-n-to-infty-n-cdot-ms-n-0-where-s-n-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Searching in Approach0 gives a few questions which seem similar: Lebesgue integrable function and limit: $lim_{ntoinfty} ncdot m(A_n)=0$ or Evaluate the limit of $lim_{n to infty}n.mu(X_n)$.
– Martin Sleziak
2 days ago