Find the smallest value of $f(x) := left({1over9}+{32over sin(x)}right)left({1over32}+{9over cos(x)}right)$...
$begingroup$
There's a function defined as:
$$f(x) := left({1over9}+{32over sin(x)}right)left({1over32}+{9over cos(x)}right)$$
In interval $$left(0,frac{pi}{2}right)$$
Find the smallest value (Save only its integer value)
I've managed to come to this
$${1over288}+{{2(sin(x)+cos(x))+576}over(sin(x)+cos(x))^2-1}$$
How can I find the smallest value now?
trigonometry inequality optimization cauchy-schwarz-inequality trigonometric-integrals
New contributor
$endgroup$
add a comment |
$begingroup$
There's a function defined as:
$$f(x) := left({1over9}+{32over sin(x)}right)left({1over32}+{9over cos(x)}right)$$
In interval $$left(0,frac{pi}{2}right)$$
Find the smallest value (Save only its integer value)
I've managed to come to this
$${1over288}+{{2(sin(x)+cos(x))+576}over(sin(x)+cos(x))^2-1}$$
How can I find the smallest value now?
trigonometry inequality optimization cauchy-schwarz-inequality trigonometric-integrals
New contributor
$endgroup$
add a comment |
$begingroup$
There's a function defined as:
$$f(x) := left({1over9}+{32over sin(x)}right)left({1over32}+{9over cos(x)}right)$$
In interval $$left(0,frac{pi}{2}right)$$
Find the smallest value (Save only its integer value)
I've managed to come to this
$${1over288}+{{2(sin(x)+cos(x))+576}over(sin(x)+cos(x))^2-1}$$
How can I find the smallest value now?
trigonometry inequality optimization cauchy-schwarz-inequality trigonometric-integrals
New contributor
$endgroup$
There's a function defined as:
$$f(x) := left({1over9}+{32over sin(x)}right)left({1over32}+{9over cos(x)}right)$$
In interval $$left(0,frac{pi}{2}right)$$
Find the smallest value (Save only its integer value)
I've managed to come to this
$${1over288}+{{2(sin(x)+cos(x))+576}over(sin(x)+cos(x))^2-1}$$
How can I find the smallest value now?
trigonometry inequality optimization cauchy-schwarz-inequality trigonometric-integrals
trigonometry inequality optimization cauchy-schwarz-inequality trigonometric-integrals
New contributor
New contributor
edited 1 hour ago
Blue
48.6k870154
48.6k870154
New contributor
asked 7 hours ago
a_man_with_no_namea_man_with_no_name
333
333
New contributor
New contributor
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since both $cos$ and $sin $ are positive in $(o,{piover 2})$ we can use Cauchy inequaliy:
$$ (a^2+b^2)(c^2+d^2)geq (ac+bd)^2$$
$$bigg({1over9}+{32over sin(x)}bigg)bigg({1over32}+{9over cos(x)}bigg)geq bigg({1over sqrt{288}}+{sqrt{288}over sqrt{sin(x)cos(x)}}bigg)^2geq bigg({1over 12sqrt{2}}+24bigg)^2$$
We used here $$sin(x)cos(x)= {1over 2}sin (2x) leq {1over 2}$$
with equality at $x={pi over 4}$. So $$y_{min} = bigg({1over 12sqrt{2}}+24bigg)^2$$
$endgroup$
add a comment |
$begingroup$
$$1+frac{288}{sin x}$$ is a decreasing function in $left(0,dfracpi2right)$ and its symmetric
$$1+frac{288}{cos x}$$ is increasing.
Hence the minimum occurs ar $x=dfracpi4$.
$endgroup$
add a comment |
$begingroup$
Here's how to continue with your idea:
Let $sin{x}+cos{x}=t$.
Then, by the Cauchy-Schwartz inequality we have $$1<t=sin{x}+cos{x}leqsqrt{(1^2+1^2)(sin^2x+cos^2x)}=sqrt2,$$
where the equality occurs for $x=frac{pi}{4},$ and since $$left(frac{t+288}{t^2-1}right)'=-frac{x^2+576x+1}{(x^2-1)^2}<0,$$ we obtain
$$
f(x)
=frac{1}{288}+frac{2(t+288)}{t^2-1}
ge frac{1}{288}+frac{2(sqrt{2}+288)}{2-1}
=576 + frac{1}{288} + 2sqrt{2}$$
and we are done!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
a_man_with_no_name is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126558%2ffind-the-smallest-value-of-fx-left1-over932-over-sinx-right-lef%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since both $cos$ and $sin $ are positive in $(o,{piover 2})$ we can use Cauchy inequaliy:
$$ (a^2+b^2)(c^2+d^2)geq (ac+bd)^2$$
$$bigg({1over9}+{32over sin(x)}bigg)bigg({1over32}+{9over cos(x)}bigg)geq bigg({1over sqrt{288}}+{sqrt{288}over sqrt{sin(x)cos(x)}}bigg)^2geq bigg({1over 12sqrt{2}}+24bigg)^2$$
We used here $$sin(x)cos(x)= {1over 2}sin (2x) leq {1over 2}$$
with equality at $x={pi over 4}$. So $$y_{min} = bigg({1over 12sqrt{2}}+24bigg)^2$$
$endgroup$
add a comment |
$begingroup$
Since both $cos$ and $sin $ are positive in $(o,{piover 2})$ we can use Cauchy inequaliy:
$$ (a^2+b^2)(c^2+d^2)geq (ac+bd)^2$$
$$bigg({1over9}+{32over sin(x)}bigg)bigg({1over32}+{9over cos(x)}bigg)geq bigg({1over sqrt{288}}+{sqrt{288}over sqrt{sin(x)cos(x)}}bigg)^2geq bigg({1over 12sqrt{2}}+24bigg)^2$$
We used here $$sin(x)cos(x)= {1over 2}sin (2x) leq {1over 2}$$
with equality at $x={pi over 4}$. So $$y_{min} = bigg({1over 12sqrt{2}}+24bigg)^2$$
$endgroup$
add a comment |
$begingroup$
Since both $cos$ and $sin $ are positive in $(o,{piover 2})$ we can use Cauchy inequaliy:
$$ (a^2+b^2)(c^2+d^2)geq (ac+bd)^2$$
$$bigg({1over9}+{32over sin(x)}bigg)bigg({1over32}+{9over cos(x)}bigg)geq bigg({1over sqrt{288}}+{sqrt{288}over sqrt{sin(x)cos(x)}}bigg)^2geq bigg({1over 12sqrt{2}}+24bigg)^2$$
We used here $$sin(x)cos(x)= {1over 2}sin (2x) leq {1over 2}$$
with equality at $x={pi over 4}$. So $$y_{min} = bigg({1over 12sqrt{2}}+24bigg)^2$$
$endgroup$
Since both $cos$ and $sin $ are positive in $(o,{piover 2})$ we can use Cauchy inequaliy:
$$ (a^2+b^2)(c^2+d^2)geq (ac+bd)^2$$
$$bigg({1over9}+{32over sin(x)}bigg)bigg({1over32}+{9over cos(x)}bigg)geq bigg({1over sqrt{288}}+{sqrt{288}over sqrt{sin(x)cos(x)}}bigg)^2geq bigg({1over 12sqrt{2}}+24bigg)^2$$
We used here $$sin(x)cos(x)= {1over 2}sin (2x) leq {1over 2}$$
with equality at $x={pi over 4}$. So $$y_{min} = bigg({1over 12sqrt{2}}+24bigg)^2$$
edited 6 hours ago
answered 7 hours ago
greedoidgreedoid
44.4k1156110
44.4k1156110
add a comment |
add a comment |
$begingroup$
$$1+frac{288}{sin x}$$ is a decreasing function in $left(0,dfracpi2right)$ and its symmetric
$$1+frac{288}{cos x}$$ is increasing.
Hence the minimum occurs ar $x=dfracpi4$.
$endgroup$
add a comment |
$begingroup$
$$1+frac{288}{sin x}$$ is a decreasing function in $left(0,dfracpi2right)$ and its symmetric
$$1+frac{288}{cos x}$$ is increasing.
Hence the minimum occurs ar $x=dfracpi4$.
$endgroup$
add a comment |
$begingroup$
$$1+frac{288}{sin x}$$ is a decreasing function in $left(0,dfracpi2right)$ and its symmetric
$$1+frac{288}{cos x}$$ is increasing.
Hence the minimum occurs ar $x=dfracpi4$.
$endgroup$
$$1+frac{288}{sin x}$$ is a decreasing function in $left(0,dfracpi2right)$ and its symmetric
$$1+frac{288}{cos x}$$ is increasing.
Hence the minimum occurs ar $x=dfracpi4$.
answered 7 hours ago
Yves DaoustYves Daoust
129k675227
129k675227
add a comment |
add a comment |
$begingroup$
Here's how to continue with your idea:
Let $sin{x}+cos{x}=t$.
Then, by the Cauchy-Schwartz inequality we have $$1<t=sin{x}+cos{x}leqsqrt{(1^2+1^2)(sin^2x+cos^2x)}=sqrt2,$$
where the equality occurs for $x=frac{pi}{4},$ and since $$left(frac{t+288}{t^2-1}right)'=-frac{x^2+576x+1}{(x^2-1)^2}<0,$$ we obtain
$$
f(x)
=frac{1}{288}+frac{2(t+288)}{t^2-1}
ge frac{1}{288}+frac{2(sqrt{2}+288)}{2-1}
=576 + frac{1}{288} + 2sqrt{2}$$
and we are done!
$endgroup$
add a comment |
$begingroup$
Here's how to continue with your idea:
Let $sin{x}+cos{x}=t$.
Then, by the Cauchy-Schwartz inequality we have $$1<t=sin{x}+cos{x}leqsqrt{(1^2+1^2)(sin^2x+cos^2x)}=sqrt2,$$
where the equality occurs for $x=frac{pi}{4},$ and since $$left(frac{t+288}{t^2-1}right)'=-frac{x^2+576x+1}{(x^2-1)^2}<0,$$ we obtain
$$
f(x)
=frac{1}{288}+frac{2(t+288)}{t^2-1}
ge frac{1}{288}+frac{2(sqrt{2}+288)}{2-1}
=576 + frac{1}{288} + 2sqrt{2}$$
and we are done!
$endgroup$
add a comment |
$begingroup$
Here's how to continue with your idea:
Let $sin{x}+cos{x}=t$.
Then, by the Cauchy-Schwartz inequality we have $$1<t=sin{x}+cos{x}leqsqrt{(1^2+1^2)(sin^2x+cos^2x)}=sqrt2,$$
where the equality occurs for $x=frac{pi}{4},$ and since $$left(frac{t+288}{t^2-1}right)'=-frac{x^2+576x+1}{(x^2-1)^2}<0,$$ we obtain
$$
f(x)
=frac{1}{288}+frac{2(t+288)}{t^2-1}
ge frac{1}{288}+frac{2(sqrt{2}+288)}{2-1}
=576 + frac{1}{288} + 2sqrt{2}$$
and we are done!
$endgroup$
Here's how to continue with your idea:
Let $sin{x}+cos{x}=t$.
Then, by the Cauchy-Schwartz inequality we have $$1<t=sin{x}+cos{x}leqsqrt{(1^2+1^2)(sin^2x+cos^2x)}=sqrt2,$$
where the equality occurs for $x=frac{pi}{4},$ and since $$left(frac{t+288}{t^2-1}right)'=-frac{x^2+576x+1}{(x^2-1)^2}<0,$$ we obtain
$$
f(x)
=frac{1}{288}+frac{2(t+288)}{t^2-1}
ge frac{1}{288}+frac{2(sqrt{2}+288)}{2-1}
=576 + frac{1}{288} + 2sqrt{2}$$
and we are done!
edited 1 hour ago
Viktor Glombik
9911527
9911527
answered 5 hours ago
Michael RozenbergMichael Rozenberg
105k1892198
105k1892198
add a comment |
add a comment |
a_man_with_no_name is a new contributor. Be nice, and check out our Code of Conduct.
a_man_with_no_name is a new contributor. Be nice, and check out our Code of Conduct.
a_man_with_no_name is a new contributor. Be nice, and check out our Code of Conduct.
a_man_with_no_name is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126558%2ffind-the-smallest-value-of-fx-left1-over932-over-sinx-right-lef%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown