How can I find the inverse of a polynomial in a quotient ring?












4












$begingroup$



I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.




I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.



In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?



Thanks a lot!!










share|cite|improve this question









New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
    $endgroup$
    – Lord Shark the Unknown
    yesterday










  • $begingroup$
    Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
    $endgroup$
    – Jyrki Lahtonen
    yesterday


















4












$begingroup$



I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.




I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.



In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?



Thanks a lot!!










share|cite|improve this question









New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
    $endgroup$
    – Lord Shark the Unknown
    yesterday










  • $begingroup$
    Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
    $endgroup$
    – Jyrki Lahtonen
    yesterday
















4












4








4





$begingroup$



I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.




I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.



In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?



Thanks a lot!!










share|cite|improve this question









New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.




I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.



In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?



Thanks a lot!!







abstract-algebra polynomials ring-theory inverse






share|cite|improve this question









New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









user26857

39.4k124183




39.4k124183






New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









ThomasThomas

212




212




New contributor




Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Thomas is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
    $endgroup$
    – Lord Shark the Unknown
    yesterday










  • $begingroup$
    Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
    $endgroup$
    – Jyrki Lahtonen
    yesterday
















  • 1




    $begingroup$
    This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
    $endgroup$
    – Lord Shark the Unknown
    yesterday










  • $begingroup$
    Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
    $endgroup$
    – Jyrki Lahtonen
    yesterday










1




1




$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday




$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday












$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday






$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday












3 Answers
3






active

oldest

votes


















3












$begingroup$

Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$



i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    extended Euc:



    $$ left( x^{3} + 1 right) $$



    $$ left( x^{2} - 2 right) $$



    $$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
    $$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
    $$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
    $$ frac{ 0}{1} $$
    $$ frac{ 1}{0} $$
    $$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
    $$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
    $$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
    $$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
      $endgroup$
      – Bill Dubuque
      yesterday












    • $begingroup$
      @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
      $endgroup$
      – Will Jagy
      yesterday



















    1












    $begingroup$

    Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      Thomas is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3100289%2fhow-can-i-find-the-inverse-of-a-polynomial-in-a-quotient-ring%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$



      i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.






      share|cite|improve this answer











      $endgroup$


















        3












        $begingroup$

        Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$



        i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.






        share|cite|improve this answer











        $endgroup$
















          3












          3








          3





          $begingroup$

          Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$



          i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.






          share|cite|improve this answer











          $endgroup$



          Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$



          i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          Bill DubuqueBill Dubuque

          210k29192640




          210k29192640























              1












              $begingroup$

              extended Euc:



              $$ left( x^{3} + 1 right) $$



              $$ left( x^{2} - 2 right) $$



              $$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
              $$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
              $$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
              $$ frac{ 0}{1} $$
              $$ frac{ 1}{0} $$
              $$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
              $$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
              $$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
              $$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
                $endgroup$
                – Bill Dubuque
                yesterday












              • $begingroup$
                @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
                $endgroup$
                – Will Jagy
                yesterday
















              1












              $begingroup$

              extended Euc:



              $$ left( x^{3} + 1 right) $$



              $$ left( x^{2} - 2 right) $$



              $$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
              $$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
              $$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
              $$ frac{ 0}{1} $$
              $$ frac{ 1}{0} $$
              $$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
              $$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
              $$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
              $$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
                $endgroup$
                – Bill Dubuque
                yesterday












              • $begingroup$
                @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
                $endgroup$
                – Will Jagy
                yesterday














              1












              1








              1





              $begingroup$

              extended Euc:



              $$ left( x^{3} + 1 right) $$



              $$ left( x^{2} - 2 right) $$



              $$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
              $$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
              $$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
              $$ frac{ 0}{1} $$
              $$ frac{ 1}{0} $$
              $$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
              $$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
              $$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
              $$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$






              share|cite|improve this answer









              $endgroup$



              extended Euc:



              $$ left( x^{3} + 1 right) $$



              $$ left( x^{2} - 2 right) $$



              $$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
              $$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
              $$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
              $$ frac{ 0}{1} $$
              $$ frac{ 1}{0} $$
              $$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
              $$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
              $$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
              $$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              Will JagyWill Jagy

              103k5101200




              103k5101200












              • $begingroup$
                If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
                $endgroup$
                – Bill Dubuque
                yesterday












              • $begingroup$
                @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
                $endgroup$
                – Will Jagy
                yesterday


















              • $begingroup$
                If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
                $endgroup$
                – Bill Dubuque
                yesterday












              • $begingroup$
                @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
                $endgroup$
                – Will Jagy
                yesterday
















              $begingroup$
              If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
              $endgroup$
              – Bill Dubuque
              yesterday






              $begingroup$
              If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
              $endgroup$
              – Bill Dubuque
              yesterday














              $begingroup$
              @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
              $endgroup$
              – Will Jagy
              yesterday




              $begingroup$
              @BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
              $endgroup$
              – Will Jagy
              yesterday











              1












              $begingroup$

              Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.






                  share|cite|improve this answer











                  $endgroup$



                  Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago









                  user26857

                  39.4k124183




                  39.4k124183










                  answered yesterday









                  José Carlos SantosJosé Carlos Santos

                  159k22126231




                  159k22126231






















                      Thomas is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      Thomas is a new contributor. Be nice, and check out our Code of Conduct.













                      Thomas is a new contributor. Be nice, and check out our Code of Conduct.












                      Thomas is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3100289%2fhow-can-i-find-the-inverse-of-a-polynomial-in-a-quotient-ring%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

                      Alcedinidae

                      RAC Tourist Trophy