How can I find the inverse of a polynomial in a quotient ring?
$begingroup$
I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.
I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.
In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?
Thanks a lot!!
abstract-algebra polynomials ring-theory inverse
New contributor
$endgroup$
add a comment |
$begingroup$
I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.
I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.
In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?
Thanks a lot!!
abstract-algebra polynomials ring-theory inverse
New contributor
$endgroup$
1
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday
add a comment |
$begingroup$
I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.
I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.
In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?
Thanks a lot!!
abstract-algebra polynomials ring-theory inverse
New contributor
$endgroup$
I am asked to find the inverse of $widehat {x^3+1} $ in $mathbb Q[x]/I$ where $I =(x^2-2)$.
I am used to find the inverse by keep doing the division until a find a irreducible elements but the degree of the polynomial i asked to find the inverse is larger than the degree of polynomial in I.
In previous question, we have calculated the inverse of $widehat{X} $ which is $(1/2)widehat X$. And i am trying to breaking down $X^3 - 1 $ into $X(X^2-2)+(2X+1)$. Is this bit some hints to approach this question or is it a new idea to find the inverse with a polynomial of a larger degree?
Thanks a lot!!
abstract-algebra polynomials ring-theory inverse
abstract-algebra polynomials ring-theory inverse
New contributor
New contributor
edited 3 hours ago
user26857
39.4k124183
39.4k124183
New contributor
asked yesterday
ThomasThomas
212
212
New contributor
New contributor
1
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday
add a comment |
1
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday
1
1
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$
i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.
$endgroup$
add a comment |
$begingroup$
extended Euc:
$$ left( x^{3} + 1 right) $$
$$ left( x^{2} - 2 right) $$
$$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
$$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
$$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
$$ frac{ 0}{1} $$
$$ frac{ 1}{0} $$
$$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
$$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
$$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
$$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$
$endgroup$
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
add a comment |
$begingroup$
Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Thomas is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3100289%2fhow-can-i-find-the-inverse-of-a-polynomial-in-a-quotient-ring%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$
i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.
$endgroup$
add a comment |
$begingroup$
Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$
i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.
$endgroup$
add a comment |
$begingroup$
Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$
i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.
$endgroup$
Hint $ color{#c00}{x^2 = 2} Rightarrow dfrac{1}{1+color{#c00}{x^2} x} ,=, dfrac{1}{1+color{#c00}2x} = dfrac{1}{1+2color{#c00}x}, dfrac{1-2x}{1-2color{#c00}x} = dfrac{1,-,2x }{1-4(color{#c00}2)}$
i.e. $ $ rationalize the denom of $, dfrac{1}{1+2sqrt{2}}.,$ More generally, use the Extended Euclidean Algorithm.
edited yesterday
answered yesterday
Bill DubuqueBill Dubuque
210k29192640
210k29192640
add a comment |
add a comment |
$begingroup$
extended Euc:
$$ left( x^{3} + 1 right) $$
$$ left( x^{2} - 2 right) $$
$$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
$$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
$$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
$$ frac{ 0}{1} $$
$$ frac{ 1}{0} $$
$$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
$$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
$$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
$$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$
$endgroup$
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
add a comment |
$begingroup$
extended Euc:
$$ left( x^{3} + 1 right) $$
$$ left( x^{2} - 2 right) $$
$$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
$$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
$$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
$$ frac{ 0}{1} $$
$$ frac{ 1}{0} $$
$$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
$$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
$$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
$$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$
$endgroup$
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
add a comment |
$begingroup$
extended Euc:
$$ left( x^{3} + 1 right) $$
$$ left( x^{2} - 2 right) $$
$$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
$$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
$$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
$$ frac{ 0}{1} $$
$$ frac{ 1}{0} $$
$$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
$$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
$$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
$$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$
$endgroup$
extended Euc:
$$ left( x^{3} + 1 right) $$
$$ left( x^{2} - 2 right) $$
$$ left( x^{3} + 1 right) = left( x^{2} - 2 right) cdot color{magenta}{ left( x right) } + left( 2 x + 1 right) $$
$$ left( x^{2} - 2 right) = left( 2 x + 1 right) cdot color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } + left( frac{ -7}{4 } right) $$
$$ left( 2 x + 1 right) = left( frac{ -7}{4 } right) cdot color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } + left( 0 right) $$
$$ frac{ 0}{1} $$
$$ frac{ 1}{0} $$
$$ color{magenta}{ left( x right) } Longrightarrow Longrightarrow frac{ left( x right) }{ left( 1 right) } $$
$$ color{magenta}{ left( frac{ 2 x - 1 }{ 4 } right) } Longrightarrow Longrightarrow frac{ left( frac{ 2 x^{2} - x + 4 }{ 4 } right) }{ left( frac{ 2 x - 1 }{ 4 } right) } $$
$$ color{magenta}{ left( frac{ - 8 x - 4 }{ 7 } right) } Longrightarrow Longrightarrow frac{ left( frac{ - 4 x^{3} - 4 }{ 7 } right) }{ left( frac{ - 4 x^{2} + 8 }{ 7 } right) } $$
$$ left( x^{3} + 1 right) left( frac{ 2 x - 1 }{ 7 } right) - left( x^{2} - 2 right) left( frac{ 2 x^{2} - x + 4 }{ 7 } right) = left( 1 right) $$
answered yesterday
Will JagyWill Jagy
103k5101200
103k5101200
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
add a comment |
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
If one insists on using the longer way of the extended Euclidean algorithm, then it is much clearer & simpler to use it in the augmented matrix form.
$endgroup$
– Bill Dubuque
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
$begingroup$
@BillDubuque I am very fond of continued fractions, and was delighted to learn Bezout for (rational) polynomials could also be done that way. Matter of taste, I guess, or of effort invested.
$endgroup$
– Will Jagy
yesterday
add a comment |
$begingroup$
Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.
$endgroup$
add a comment |
$begingroup$
Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.
$endgroup$
add a comment |
$begingroup$
Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.
$endgroup$
Applying the generalized Euclidean algorithm to $x^3+1$ and to $x^2-2$, you get that$$-frac74=left(frac{x^2}2-frac x4+1right)(x^2-2)-left(frac x2-frac14right)(x^3+1).$$Therefore,$$left(-frac{2x^2}7+frac x7-frac47right)(x^2-2)+left(frac{2x}7-frac17right)(x^3+1)=1$$and so the inverse of $x^3+1$ in $mathbb{Q}[x]/langle x^2-2rangle$ is $dfrac{2x}7-dfrac17$.
edited 3 hours ago
user26857
39.4k124183
39.4k124183
answered yesterday
José Carlos SantosJosé Carlos Santos
159k22126231
159k22126231
add a comment |
add a comment |
Thomas is a new contributor. Be nice, and check out our Code of Conduct.
Thomas is a new contributor. Be nice, and check out our Code of Conduct.
Thomas is a new contributor. Be nice, and check out our Code of Conduct.
Thomas is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3100289%2fhow-can-i-find-the-inverse-of-a-polynomial-in-a-quotient-ring%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is more or less the same as computing $1/((sqrt2)^3+1)$ in surds.
$endgroup$
– Lord Shark the Unknown
yesterday
$begingroup$
Your calculation (breaking down $x^3+1$) shows that $widehat{x^3+1}=widehat{2x+1}$. Go from there.
$endgroup$
– Jyrki Lahtonen
yesterday