Addition of numbers from a list












0















For this question I'm trying to add together integers from a list.



For example, if the inputted numbers are [2,4,6], it should output 34 because (1+2)+(1+2+3+4)+(1+2+3+4+5+6) = 34.



If the input is [9], it will output 45; (1+2+3+4+5+6+7+8+9) = 45.



Here's my code:



def additionOfList(st):
n = len(st)
total = 0

for i in range(n):
for k in range(1, n+1):
total += k

return total


Any help would be greatly appreciated; can't seem to figure this out.










share|improve this question

























  • so you are summing the triangle number values of each integer?

    – Martijn Pieters
    Nov 20 '18 at 18:47













  • You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

    – wim
    Nov 20 '18 at 18:51













  • @wim what do you mean about the outer loop?

    – Josephi Dmitry
    Nov 20 '18 at 18:54






  • 1





    The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

    – wim
    Nov 20 '18 at 18:56
















0















For this question I'm trying to add together integers from a list.



For example, if the inputted numbers are [2,4,6], it should output 34 because (1+2)+(1+2+3+4)+(1+2+3+4+5+6) = 34.



If the input is [9], it will output 45; (1+2+3+4+5+6+7+8+9) = 45.



Here's my code:



def additionOfList(st):
n = len(st)
total = 0

for i in range(n):
for k in range(1, n+1):
total += k

return total


Any help would be greatly appreciated; can't seem to figure this out.










share|improve this question

























  • so you are summing the triangle number values of each integer?

    – Martijn Pieters
    Nov 20 '18 at 18:47













  • You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

    – wim
    Nov 20 '18 at 18:51













  • @wim what do you mean about the outer loop?

    – Josephi Dmitry
    Nov 20 '18 at 18:54






  • 1





    The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

    – wim
    Nov 20 '18 at 18:56














0












0








0








For this question I'm trying to add together integers from a list.



For example, if the inputted numbers are [2,4,6], it should output 34 because (1+2)+(1+2+3+4)+(1+2+3+4+5+6) = 34.



If the input is [9], it will output 45; (1+2+3+4+5+6+7+8+9) = 45.



Here's my code:



def additionOfList(st):
n = len(st)
total = 0

for i in range(n):
for k in range(1, n+1):
total += k

return total


Any help would be greatly appreciated; can't seem to figure this out.










share|improve this question
















For this question I'm trying to add together integers from a list.



For example, if the inputted numbers are [2,4,6], it should output 34 because (1+2)+(1+2+3+4)+(1+2+3+4+5+6) = 34.



If the input is [9], it will output 45; (1+2+3+4+5+6+7+8+9) = 45.



Here's my code:



def additionOfList(st):
n = len(st)
total = 0

for i in range(n):
for k in range(1, n+1):
total += k

return total


Any help would be greatly appreciated; can't seem to figure this out.







python






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 20 '18 at 19:05









Filip Młynarski

1,5881311




1,5881311










asked Nov 20 '18 at 18:46









Josephi DmitryJosephi Dmitry

316




316













  • so you are summing the triangle number values of each integer?

    – Martijn Pieters
    Nov 20 '18 at 18:47













  • You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

    – wim
    Nov 20 '18 at 18:51













  • @wim what do you mean about the outer loop?

    – Josephi Dmitry
    Nov 20 '18 at 18:54






  • 1





    The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

    – wim
    Nov 20 '18 at 18:56



















  • so you are summing the triangle number values of each integer?

    – Martijn Pieters
    Nov 20 '18 at 18:47













  • You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

    – wim
    Nov 20 '18 at 18:51













  • @wim what do you mean about the outer loop?

    – Josephi Dmitry
    Nov 20 '18 at 18:54






  • 1





    The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

    – wim
    Nov 20 '18 at 18:56

















so you are summing the triangle number values of each integer?

– Martijn Pieters
Nov 20 '18 at 18:47







so you are summing the triangle number values of each integer?

– Martijn Pieters
Nov 20 '18 at 18:47















You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

– wim
Nov 20 '18 at 18:51







You are very close. You just need to change what you're iterating over in the outer loop! (n is the same each time, and i is not used)

– wim
Nov 20 '18 at 18:51















@wim what do you mean about the outer loop?

– Josephi Dmitry
Nov 20 '18 at 18:54





@wim what do you mean about the outer loop?

– Josephi Dmitry
Nov 20 '18 at 18:54




1




1





The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

– wim
Nov 20 '18 at 18:56





The loop over for i in range(n) is the outer loop, and the loop over for k in range(1, n+1) is the inner loop.

– wim
Nov 20 '18 at 18:56












3 Answers
3






active

oldest

votes


















6














l = [2,4,6]
total = 0

for i in l:
summation = (i * (i + 1)) / 2
total = total + summation

print(total) # 34


or... for the one-liner folks



print(sum([(i*(i+1))/2 for i in [2,4,6]]))





share|improve this answer
























  • Thanks, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:04






  • 1





    @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

    – Conner
    Nov 20 '18 at 19:04



















3














You are summing triangle numbers; just define a function that calculates the triangle number for each entry, then use sum() to sum each result.



Triangle numbers can be calculated trivially with the formula (N * (N + 1)) / 2:



def triangle_number(n):
return (n * (n + 1)) // 2

def triangle_sum(l):
return sum(map(triangle_number, l))


Your own error is to use the length of the input list as n; you are not calculating the triangle number of the length of the list; you'd want to use each individual number in st as n here:



def additionOfList(st):
total = 0
for n in st:
# calculate triangle number for n


However, whatever you do, do not just loop from 1 to n! That won't scale to large numbers, and is not needed here at all.



If you want to understand why triangle numbers can so easily be calculated, just write out the numbers on a line. Lets use n = 5:



1 2 3 4 5


Now write the same numbers in reverse underneath, and add up the columns:



1 2 3 4 5
5 4 3 2 1 +
----------
6 6 6 6 6


The sum is always 6. That's no coincidence. When you increase N, the sum is always going to be N + 1. Now add up the numbers on the bottom column, that's just 5 times 6, right?



1 2 3 4 5
5 4 3 2 1 +
----------
6 6 6 6 6 = 5 x 6 = 30


So the sum of all numbers from 1 to 5 plus the sum of numbers of 5 to 1, is 5 times 5 + 1. That's double from what you needed for 1 to 5 alone. Since it is doubled only because you also added 5 through to 1, you can divide by 2 to get the sum:



1 2 3 4 5 = 5 x 6 / 2 = 15
5 4 3 2 1 = 5 x 6 / 2 = 15
----------
6 6 6 6 6 = 5 x 6 = 30


Generalising that to any N, that makes:



triangle_number(N) = N * (N + 1) / 2


Since we can calculate that number for any N, it'll always be faster than manually adding up 1 + 2 + 3 + 4 + ... + N. Computers like that kind of trick.



You can ask Python to sum all the numbers from 1 through to N with:



sum(range(1, n + 1))


but if you compare that with the above triangle_number() function, you'll find that it can take a long, long time when your n value becomes big:



>>> def triangle_number(n):
... return (n * (n + 1)) // 2
...
>>> def sum_range(n):
... return sum(range(1, n + 1))
...
>>> triangle_number(5)
15
>>> sum_range(5)
15
>>> from timeit import timeit
>>> timeit('c(1000)', 'from __main__ import sum_range as c') # how long does it take to do this 1 million times
17.520909604994813
>>> timeit('c(1000)', 'from __main__ import triangle_number as c')
0.1906668500159867


1 million calculations of the triangle number for N = 1000 is really fast, but summing 1 through to 1000 takes 17.5 seconds.






share|improve this answer





















  • 2





    I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

    – wim
    Nov 20 '18 at 18:52






  • 1





    Never knew it has its own name, great answer +1

    – Filip Młynarski
    Nov 20 '18 at 18:55











  • Thank you very much, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:03











  • @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

    – Martijn Pieters
    Nov 20 '18 at 19:06





















1














def additionOfList(st):
return int(sum([(i**2)/2 + i/2 for i in st]))

print(additionOfList([2,4,6])) # -> 34





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53399555%2faddition-of-numbers-from-a-list%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6














    l = [2,4,6]
    total = 0

    for i in l:
    summation = (i * (i + 1)) / 2
    total = total + summation

    print(total) # 34


    or... for the one-liner folks



    print(sum([(i*(i+1))/2 for i in [2,4,6]]))





    share|improve this answer
























    • Thanks, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:04






    • 1





      @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

      – Conner
      Nov 20 '18 at 19:04
















    6














    l = [2,4,6]
    total = 0

    for i in l:
    summation = (i * (i + 1)) / 2
    total = total + summation

    print(total) # 34


    or... for the one-liner folks



    print(sum([(i*(i+1))/2 for i in [2,4,6]]))





    share|improve this answer
























    • Thanks, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:04






    • 1





      @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

      – Conner
      Nov 20 '18 at 19:04














    6












    6








    6







    l = [2,4,6]
    total = 0

    for i in l:
    summation = (i * (i + 1)) / 2
    total = total + summation

    print(total) # 34


    or... for the one-liner folks



    print(sum([(i*(i+1))/2 for i in [2,4,6]]))





    share|improve this answer













    l = [2,4,6]
    total = 0

    for i in l:
    summation = (i * (i + 1)) / 2
    total = total + summation

    print(total) # 34


    or... for the one-liner folks



    print(sum([(i*(i+1))/2 for i in [2,4,6]]))






    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Nov 20 '18 at 18:52









    ConnerConner

    23.2k84568




    23.2k84568













    • Thanks, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:04






    • 1





      @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

      – Conner
      Nov 20 '18 at 19:04



















    • Thanks, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:04






    • 1





      @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

      – Conner
      Nov 20 '18 at 19:04

















    Thanks, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:04





    Thanks, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:04




    1




    1





    @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

    – Conner
    Nov 20 '18 at 19:04





    @JosephiDmitry If it helped you can use the check mark to designate an accepted answer

    – Conner
    Nov 20 '18 at 19:04













    3














    You are summing triangle numbers; just define a function that calculates the triangle number for each entry, then use sum() to sum each result.



    Triangle numbers can be calculated trivially with the formula (N * (N + 1)) / 2:



    def triangle_number(n):
    return (n * (n + 1)) // 2

    def triangle_sum(l):
    return sum(map(triangle_number, l))


    Your own error is to use the length of the input list as n; you are not calculating the triangle number of the length of the list; you'd want to use each individual number in st as n here:



    def additionOfList(st):
    total = 0
    for n in st:
    # calculate triangle number for n


    However, whatever you do, do not just loop from 1 to n! That won't scale to large numbers, and is not needed here at all.



    If you want to understand why triangle numbers can so easily be calculated, just write out the numbers on a line. Lets use n = 5:



    1 2 3 4 5


    Now write the same numbers in reverse underneath, and add up the columns:



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6


    The sum is always 6. That's no coincidence. When you increase N, the sum is always going to be N + 1. Now add up the numbers on the bottom column, that's just 5 times 6, right?



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    So the sum of all numbers from 1 to 5 plus the sum of numbers of 5 to 1, is 5 times 5 + 1. That's double from what you needed for 1 to 5 alone. Since it is doubled only because you also added 5 through to 1, you can divide by 2 to get the sum:



    1 2 3 4 5 = 5 x 6 / 2 = 15
    5 4 3 2 1 = 5 x 6 / 2 = 15
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    Generalising that to any N, that makes:



    triangle_number(N) = N * (N + 1) / 2


    Since we can calculate that number for any N, it'll always be faster than manually adding up 1 + 2 + 3 + 4 + ... + N. Computers like that kind of trick.



    You can ask Python to sum all the numbers from 1 through to N with:



    sum(range(1, n + 1))


    but if you compare that with the above triangle_number() function, you'll find that it can take a long, long time when your n value becomes big:



    >>> def triangle_number(n):
    ... return (n * (n + 1)) // 2
    ...
    >>> def sum_range(n):
    ... return sum(range(1, n + 1))
    ...
    >>> triangle_number(5)
    15
    >>> sum_range(5)
    15
    >>> from timeit import timeit
    >>> timeit('c(1000)', 'from __main__ import sum_range as c') # how long does it take to do this 1 million times
    17.520909604994813
    >>> timeit('c(1000)', 'from __main__ import triangle_number as c')
    0.1906668500159867


    1 million calculations of the triangle number for N = 1000 is really fast, but summing 1 through to 1000 takes 17.5 seconds.






    share|improve this answer





















    • 2





      I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

      – wim
      Nov 20 '18 at 18:52






    • 1





      Never knew it has its own name, great answer +1

      – Filip Młynarski
      Nov 20 '18 at 18:55











    • Thank you very much, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:03











    • @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

      – Martijn Pieters
      Nov 20 '18 at 19:06


















    3














    You are summing triangle numbers; just define a function that calculates the triangle number for each entry, then use sum() to sum each result.



    Triangle numbers can be calculated trivially with the formula (N * (N + 1)) / 2:



    def triangle_number(n):
    return (n * (n + 1)) // 2

    def triangle_sum(l):
    return sum(map(triangle_number, l))


    Your own error is to use the length of the input list as n; you are not calculating the triangle number of the length of the list; you'd want to use each individual number in st as n here:



    def additionOfList(st):
    total = 0
    for n in st:
    # calculate triangle number for n


    However, whatever you do, do not just loop from 1 to n! That won't scale to large numbers, and is not needed here at all.



    If you want to understand why triangle numbers can so easily be calculated, just write out the numbers on a line. Lets use n = 5:



    1 2 3 4 5


    Now write the same numbers in reverse underneath, and add up the columns:



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6


    The sum is always 6. That's no coincidence. When you increase N, the sum is always going to be N + 1. Now add up the numbers on the bottom column, that's just 5 times 6, right?



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    So the sum of all numbers from 1 to 5 plus the sum of numbers of 5 to 1, is 5 times 5 + 1. That's double from what you needed for 1 to 5 alone. Since it is doubled only because you also added 5 through to 1, you can divide by 2 to get the sum:



    1 2 3 4 5 = 5 x 6 / 2 = 15
    5 4 3 2 1 = 5 x 6 / 2 = 15
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    Generalising that to any N, that makes:



    triangle_number(N) = N * (N + 1) / 2


    Since we can calculate that number for any N, it'll always be faster than manually adding up 1 + 2 + 3 + 4 + ... + N. Computers like that kind of trick.



    You can ask Python to sum all the numbers from 1 through to N with:



    sum(range(1, n + 1))


    but if you compare that with the above triangle_number() function, you'll find that it can take a long, long time when your n value becomes big:



    >>> def triangle_number(n):
    ... return (n * (n + 1)) // 2
    ...
    >>> def sum_range(n):
    ... return sum(range(1, n + 1))
    ...
    >>> triangle_number(5)
    15
    >>> sum_range(5)
    15
    >>> from timeit import timeit
    >>> timeit('c(1000)', 'from __main__ import sum_range as c') # how long does it take to do this 1 million times
    17.520909604994813
    >>> timeit('c(1000)', 'from __main__ import triangle_number as c')
    0.1906668500159867


    1 million calculations of the triangle number for N = 1000 is really fast, but summing 1 through to 1000 takes 17.5 seconds.






    share|improve this answer





















    • 2





      I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

      – wim
      Nov 20 '18 at 18:52






    • 1





      Never knew it has its own name, great answer +1

      – Filip Młynarski
      Nov 20 '18 at 18:55











    • Thank you very much, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:03











    • @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

      – Martijn Pieters
      Nov 20 '18 at 19:06
















    3












    3








    3







    You are summing triangle numbers; just define a function that calculates the triangle number for each entry, then use sum() to sum each result.



    Triangle numbers can be calculated trivially with the formula (N * (N + 1)) / 2:



    def triangle_number(n):
    return (n * (n + 1)) // 2

    def triangle_sum(l):
    return sum(map(triangle_number, l))


    Your own error is to use the length of the input list as n; you are not calculating the triangle number of the length of the list; you'd want to use each individual number in st as n here:



    def additionOfList(st):
    total = 0
    for n in st:
    # calculate triangle number for n


    However, whatever you do, do not just loop from 1 to n! That won't scale to large numbers, and is not needed here at all.



    If you want to understand why triangle numbers can so easily be calculated, just write out the numbers on a line. Lets use n = 5:



    1 2 3 4 5


    Now write the same numbers in reverse underneath, and add up the columns:



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6


    The sum is always 6. That's no coincidence. When you increase N, the sum is always going to be N + 1. Now add up the numbers on the bottom column, that's just 5 times 6, right?



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    So the sum of all numbers from 1 to 5 plus the sum of numbers of 5 to 1, is 5 times 5 + 1. That's double from what you needed for 1 to 5 alone. Since it is doubled only because you also added 5 through to 1, you can divide by 2 to get the sum:



    1 2 3 4 5 = 5 x 6 / 2 = 15
    5 4 3 2 1 = 5 x 6 / 2 = 15
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    Generalising that to any N, that makes:



    triangle_number(N) = N * (N + 1) / 2


    Since we can calculate that number for any N, it'll always be faster than manually adding up 1 + 2 + 3 + 4 + ... + N. Computers like that kind of trick.



    You can ask Python to sum all the numbers from 1 through to N with:



    sum(range(1, n + 1))


    but if you compare that with the above triangle_number() function, you'll find that it can take a long, long time when your n value becomes big:



    >>> def triangle_number(n):
    ... return (n * (n + 1)) // 2
    ...
    >>> def sum_range(n):
    ... return sum(range(1, n + 1))
    ...
    >>> triangle_number(5)
    15
    >>> sum_range(5)
    15
    >>> from timeit import timeit
    >>> timeit('c(1000)', 'from __main__ import sum_range as c') # how long does it take to do this 1 million times
    17.520909604994813
    >>> timeit('c(1000)', 'from __main__ import triangle_number as c')
    0.1906668500159867


    1 million calculations of the triangle number for N = 1000 is really fast, but summing 1 through to 1000 takes 17.5 seconds.






    share|improve this answer















    You are summing triangle numbers; just define a function that calculates the triangle number for each entry, then use sum() to sum each result.



    Triangle numbers can be calculated trivially with the formula (N * (N + 1)) / 2:



    def triangle_number(n):
    return (n * (n + 1)) // 2

    def triangle_sum(l):
    return sum(map(triangle_number, l))


    Your own error is to use the length of the input list as n; you are not calculating the triangle number of the length of the list; you'd want to use each individual number in st as n here:



    def additionOfList(st):
    total = 0
    for n in st:
    # calculate triangle number for n


    However, whatever you do, do not just loop from 1 to n! That won't scale to large numbers, and is not needed here at all.



    If you want to understand why triangle numbers can so easily be calculated, just write out the numbers on a line. Lets use n = 5:



    1 2 3 4 5


    Now write the same numbers in reverse underneath, and add up the columns:



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6


    The sum is always 6. That's no coincidence. When you increase N, the sum is always going to be N + 1. Now add up the numbers on the bottom column, that's just 5 times 6, right?



    1 2 3 4 5
    5 4 3 2 1 +
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    So the sum of all numbers from 1 to 5 plus the sum of numbers of 5 to 1, is 5 times 5 + 1. That's double from what you needed for 1 to 5 alone. Since it is doubled only because you also added 5 through to 1, you can divide by 2 to get the sum:



    1 2 3 4 5 = 5 x 6 / 2 = 15
    5 4 3 2 1 = 5 x 6 / 2 = 15
    ----------
    6 6 6 6 6 = 5 x 6 = 30


    Generalising that to any N, that makes:



    triangle_number(N) = N * (N + 1) / 2


    Since we can calculate that number for any N, it'll always be faster than manually adding up 1 + 2 + 3 + 4 + ... + N. Computers like that kind of trick.



    You can ask Python to sum all the numbers from 1 through to N with:



    sum(range(1, n + 1))


    but if you compare that with the above triangle_number() function, you'll find that it can take a long, long time when your n value becomes big:



    >>> def triangle_number(n):
    ... return (n * (n + 1)) // 2
    ...
    >>> def sum_range(n):
    ... return sum(range(1, n + 1))
    ...
    >>> triangle_number(5)
    15
    >>> sum_range(5)
    15
    >>> from timeit import timeit
    >>> timeit('c(1000)', 'from __main__ import sum_range as c') # how long does it take to do this 1 million times
    17.520909604994813
    >>> timeit('c(1000)', 'from __main__ import triangle_number as c')
    0.1906668500159867


    1 million calculations of the triangle number for N = 1000 is really fast, but summing 1 through to 1000 takes 17.5 seconds.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Nov 20 '18 at 21:45

























    answered Nov 20 '18 at 18:51









    Martijn PietersMartijn Pieters

    703k13324422276




    703k13324422276








    • 2





      I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

      – wim
      Nov 20 '18 at 18:52






    • 1





      Never knew it has its own name, great answer +1

      – Filip Młynarski
      Nov 20 '18 at 18:55











    • Thank you very much, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:03











    • @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

      – Martijn Pieters
      Nov 20 '18 at 19:06
















    • 2





      I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

      – wim
      Nov 20 '18 at 18:52






    • 1





      Never knew it has its own name, great answer +1

      – Filip Młynarski
      Nov 20 '18 at 18:55











    • Thank you very much, this helped out!

      – Josephi Dmitry
      Nov 20 '18 at 19:03











    • @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

      – Martijn Pieters
      Nov 20 '18 at 19:06










    2




    2





    I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

    – wim
    Nov 20 '18 at 18:52





    I'm not sure providing a closed form solution which completely departs from the OP's original attempt is the best approach here.

    – wim
    Nov 20 '18 at 18:52




    1




    1





    Never knew it has its own name, great answer +1

    – Filip Młynarski
    Nov 20 '18 at 18:55





    Never knew it has its own name, great answer +1

    – Filip Młynarski
    Nov 20 '18 at 18:55













    Thank you very much, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:03





    Thank you very much, this helped out!

    – Josephi Dmitry
    Nov 20 '18 at 19:03













    @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

    – Martijn Pieters
    Nov 20 '18 at 19:06







    @JosephiDmitry: Glad to have been of help! Feel free to accept one of the answers if you feel it was useful to you. :-) You can only pick one, the choice is yours. The idea is that you pick the one you feel helped you the most. There is no requirement that you select any, not accepting an answer is also allowed.

    – Martijn Pieters
    Nov 20 '18 at 19:06













    1














    def additionOfList(st):
    return int(sum([(i**2)/2 + i/2 for i in st]))

    print(additionOfList([2,4,6])) # -> 34





    share|improve this answer




























      1














      def additionOfList(st):
      return int(sum([(i**2)/2 + i/2 for i in st]))

      print(additionOfList([2,4,6])) # -> 34





      share|improve this answer


























        1












        1








        1







        def additionOfList(st):
        return int(sum([(i**2)/2 + i/2 for i in st]))

        print(additionOfList([2,4,6])) # -> 34





        share|improve this answer













        def additionOfList(st):
        return int(sum([(i**2)/2 + i/2 for i in st]))

        print(additionOfList([2,4,6])) # -> 34






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 20 '18 at 18:52









        Filip MłynarskiFilip Młynarski

        1,5881311




        1,5881311






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53399555%2faddition-of-numbers-from-a-list%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

            Alcedinidae

            Origin of the phrase “under your belt”?