Compute $S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor$












3












$begingroup$


I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You can write $t$ in terms of $m$ in each case.
    $endgroup$
    – Hello_World
    2 days ago






  • 1




    $begingroup$
    @Hello_World Actuallly, you can.
    $endgroup$
    – 5xum
    2 days ago










  • $begingroup$
    Are you asking me to write them in terms of $m$? I can do that if it helps.
    $endgroup$
    – Hello_World
    2 days ago












  • $begingroup$
    @KemonoChen, please write that as an answer so that we can downvote it.
    $endgroup$
    – Carsten S
    2 days ago
















3












$begingroup$


I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You can write $t$ in terms of $m$ in each case.
    $endgroup$
    – Hello_World
    2 days ago






  • 1




    $begingroup$
    @Hello_World Actuallly, you can.
    $endgroup$
    – 5xum
    2 days ago










  • $begingroup$
    Are you asking me to write them in terms of $m$? I can do that if it helps.
    $endgroup$
    – Hello_World
    2 days ago












  • $begingroup$
    @KemonoChen, please write that as an answer so that we can downvote it.
    $endgroup$
    – Carsten S
    2 days ago














3












3








3





$begingroup$


I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question











$endgroup$




I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.







sequences-and-series number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Asaf Karagila

302k32427757




302k32427757










asked 2 days ago









Hello_WorldHello_World

4,16221631




4,16221631








  • 1




    $begingroup$
    You can write $t$ in terms of $m$ in each case.
    $endgroup$
    – Hello_World
    2 days ago






  • 1




    $begingroup$
    @Hello_World Actuallly, you can.
    $endgroup$
    – 5xum
    2 days ago










  • $begingroup$
    Are you asking me to write them in terms of $m$? I can do that if it helps.
    $endgroup$
    – Hello_World
    2 days ago












  • $begingroup$
    @KemonoChen, please write that as an answer so that we can downvote it.
    $endgroup$
    – Carsten S
    2 days ago














  • 1




    $begingroup$
    You can write $t$ in terms of $m$ in each case.
    $endgroup$
    – Hello_World
    2 days ago






  • 1




    $begingroup$
    @Hello_World Actuallly, you can.
    $endgroup$
    – 5xum
    2 days ago










  • $begingroup$
    Are you asking me to write them in terms of $m$? I can do that if it helps.
    $endgroup$
    – Hello_World
    2 days ago












  • $begingroup$
    @KemonoChen, please write that as an answer so that we can downvote it.
    $endgroup$
    – Carsten S
    2 days ago








1




1




$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago




$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago




1




1




$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago




$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago












$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago






$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago














$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago




$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago










1 Answer
1






active

oldest

votes


















8












$begingroup$

Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$

    Yes, you are correct. You may also write the result as a more compact formula:
    $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
    begin{cases}
    t^2&text {if $m=2t$}\
    t(t+1)&text {if $m=2t+1$}\
    end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

    Indeed, if $m=2t$ then
    $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
    and if $m=2t+1$ then
    $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






    share|cite|improve this answer











    $endgroup$


















      8












      $begingroup$

      Yes, you are correct. You may also write the result as a more compact formula:
      $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
      begin{cases}
      t^2&text {if $m=2t$}\
      t(t+1)&text {if $m=2t+1$}\
      end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

      Indeed, if $m=2t$ then
      $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
      and if $m=2t+1$ then
      $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






      share|cite|improve this answer











      $endgroup$
















        8












        8








        8





        $begingroup$

        Yes, you are correct. You may also write the result as a more compact formula:
        $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
        begin{cases}
        t^2&text {if $m=2t$}\
        t(t+1)&text {if $m=2t+1$}\
        end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

        Indeed, if $m=2t$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
        and if $m=2t+1$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






        share|cite|improve this answer











        $endgroup$



        Yes, you are correct. You may also write the result as a more compact formula:
        $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
        begin{cases}
        t^2&text {if $m=2t$}\
        t(t+1)&text {if $m=2t+1$}\
        end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

        Indeed, if $m=2t$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
        and if $m=2t+1$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered 2 days ago









        Robert ZRobert Z

        94.5k1063134




        94.5k1063134






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            "Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

            Alcedinidae

            Origin of the phrase “under your belt”?