Compute $S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor$
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
add a comment |
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago
add a comment |
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
sequences-and-series number-theory
edited 2 days ago
Asaf Karagila♦
302k32427757
302k32427757
asked 2 days ago
Hello_WorldHello_World
4,16221631
4,16221631
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago
add a comment |
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago
1
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
1
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
edited 2 days ago
answered 2 days ago
Robert ZRobert Z
94.5k1063134
94.5k1063134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
2 days ago
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
2 days ago
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
2 days ago
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
2 days ago