Trying to plot the norm of the solutions to NDsolve












3












$begingroup$



I have been tried to do two things with the solutions from NDSolveValue




  • plot the norm of the solutions of a differential equation system versus time.

  • plot one component of the solutions of a differential equation system versus time.


but I have been having difficulty it setting up the right syntax to do so.




The problem seems to be (for plotting the norms of the solutions), that Mathematica takes the norm of all the solutions, or tries to find the norm of a function rather than the value of the function at a certain time.



I have created a minimum working example from the original code. The major change is that in the original code set is a random set of $n$ points. The examples are my best guess for the correct syntax for the problems listed above. For context I have included a 3D parametric plot which works as intended.



If you have any questions please don't be afraid to ask.



Minimum Example



(*Simulation Parameters*)
Clear[i, P, B]
Clear[f]
f[P_, B_] := 1/2 P + 10 B/(1 + B);
tmax = 20;
A = {{1/20, 1/4, 1/50}, {1/4, 1/26, 1/40}};
set = {{1.1, 11.2, 0.2}, {5.6, 4.3, 7.8}, {2.3, 3.4, 3.4}};

(*ODE System*)
ODEsys = {i'[t] == f[P[t], B[t]] - i[t],
P'[t] ==
P[t] (1 - A[[1, 1]] P[t] - A[[1, 2]] B[t] - A[[1, 3]] i[t]),
B'[t] == B[t] (1 - A[[2, 2]] B[t] - A[[2, 3]] i[t])};

(* Simulation *)
With[{ttmax = tmax},
sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,
i[0] == init0}}, {P, B, i}, {t, 0, ttmax}, {init1, init2,
init0}]];

(* Plots I am having trouble with *)
(* Cannot plot the first component of multiple solutions. *)
ParametricPlot[{t,
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)][[All,
1]]}, {t, 0, tmax}, PlotRange -> All]

(* Takes the norm of all solutions. Does not plot the norms of the
three different solutions. *)
ParametricPlot[{t,
Norm[Evaluate[
Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)]]}, {t, 0,
tmax}, PlotRange -> All]

(* This plot works as attended. *)
trajectoriesPlot =
ParametricPlot3D[
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)], {t,
0, tmax}, PlotRange -> All]









share|improve this question









$endgroup$












  • $begingroup$
    I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
    $endgroup$
    – AzJ
    yesterday
















3












$begingroup$



I have been tried to do two things with the solutions from NDSolveValue




  • plot the norm of the solutions of a differential equation system versus time.

  • plot one component of the solutions of a differential equation system versus time.


but I have been having difficulty it setting up the right syntax to do so.




The problem seems to be (for plotting the norms of the solutions), that Mathematica takes the norm of all the solutions, or tries to find the norm of a function rather than the value of the function at a certain time.



I have created a minimum working example from the original code. The major change is that in the original code set is a random set of $n$ points. The examples are my best guess for the correct syntax for the problems listed above. For context I have included a 3D parametric plot which works as intended.



If you have any questions please don't be afraid to ask.



Minimum Example



(*Simulation Parameters*)
Clear[i, P, B]
Clear[f]
f[P_, B_] := 1/2 P + 10 B/(1 + B);
tmax = 20;
A = {{1/20, 1/4, 1/50}, {1/4, 1/26, 1/40}};
set = {{1.1, 11.2, 0.2}, {5.6, 4.3, 7.8}, {2.3, 3.4, 3.4}};

(*ODE System*)
ODEsys = {i'[t] == f[P[t], B[t]] - i[t],
P'[t] ==
P[t] (1 - A[[1, 1]] P[t] - A[[1, 2]] B[t] - A[[1, 3]] i[t]),
B'[t] == B[t] (1 - A[[2, 2]] B[t] - A[[2, 3]] i[t])};

(* Simulation *)
With[{ttmax = tmax},
sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,
i[0] == init0}}, {P, B, i}, {t, 0, ttmax}, {init1, init2,
init0}]];

(* Plots I am having trouble with *)
(* Cannot plot the first component of multiple solutions. *)
ParametricPlot[{t,
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)][[All,
1]]}, {t, 0, tmax}, PlotRange -> All]

(* Takes the norm of all solutions. Does not plot the norms of the
three different solutions. *)
ParametricPlot[{t,
Norm[Evaluate[
Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)]]}, {t, 0,
tmax}, PlotRange -> All]

(* This plot works as attended. *)
trajectoriesPlot =
ParametricPlot3D[
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)], {t,
0, tmax}, PlotRange -> All]









share|improve this question









$endgroup$












  • $begingroup$
    I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
    $endgroup$
    – AzJ
    yesterday














3












3








3





$begingroup$



I have been tried to do two things with the solutions from NDSolveValue




  • plot the norm of the solutions of a differential equation system versus time.

  • plot one component of the solutions of a differential equation system versus time.


but I have been having difficulty it setting up the right syntax to do so.




The problem seems to be (for plotting the norms of the solutions), that Mathematica takes the norm of all the solutions, or tries to find the norm of a function rather than the value of the function at a certain time.



I have created a minimum working example from the original code. The major change is that in the original code set is a random set of $n$ points. The examples are my best guess for the correct syntax for the problems listed above. For context I have included a 3D parametric plot which works as intended.



If you have any questions please don't be afraid to ask.



Minimum Example



(*Simulation Parameters*)
Clear[i, P, B]
Clear[f]
f[P_, B_] := 1/2 P + 10 B/(1 + B);
tmax = 20;
A = {{1/20, 1/4, 1/50}, {1/4, 1/26, 1/40}};
set = {{1.1, 11.2, 0.2}, {5.6, 4.3, 7.8}, {2.3, 3.4, 3.4}};

(*ODE System*)
ODEsys = {i'[t] == f[P[t], B[t]] - i[t],
P'[t] ==
P[t] (1 - A[[1, 1]] P[t] - A[[1, 2]] B[t] - A[[1, 3]] i[t]),
B'[t] == B[t] (1 - A[[2, 2]] B[t] - A[[2, 3]] i[t])};

(* Simulation *)
With[{ttmax = tmax},
sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,
i[0] == init0}}, {P, B, i}, {t, 0, ttmax}, {init1, init2,
init0}]];

(* Plots I am having trouble with *)
(* Cannot plot the first component of multiple solutions. *)
ParametricPlot[{t,
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)][[All,
1]]}, {t, 0, tmax}, PlotRange -> All]

(* Takes the norm of all solutions. Does not plot the norms of the
three different solutions. *)
ParametricPlot[{t,
Norm[Evaluate[
Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)]]}, {t, 0,
tmax}, PlotRange -> All]

(* This plot works as attended. *)
trajectoriesPlot =
ParametricPlot3D[
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)], {t,
0, tmax}, PlotRange -> All]









share|improve this question









$endgroup$





I have been tried to do two things with the solutions from NDSolveValue




  • plot the norm of the solutions of a differential equation system versus time.

  • plot one component of the solutions of a differential equation system versus time.


but I have been having difficulty it setting up the right syntax to do so.




The problem seems to be (for plotting the norms of the solutions), that Mathematica takes the norm of all the solutions, or tries to find the norm of a function rather than the value of the function at a certain time.



I have created a minimum working example from the original code. The major change is that in the original code set is a random set of $n$ points. The examples are my best guess for the correct syntax for the problems listed above. For context I have included a 3D parametric plot which works as intended.



If you have any questions please don't be afraid to ask.



Minimum Example



(*Simulation Parameters*)
Clear[i, P, B]
Clear[f]
f[P_, B_] := 1/2 P + 10 B/(1 + B);
tmax = 20;
A = {{1/20, 1/4, 1/50}, {1/4, 1/26, 1/40}};
set = {{1.1, 11.2, 0.2}, {5.6, 4.3, 7.8}, {2.3, 3.4, 3.4}};

(*ODE System*)
ODEsys = {i'[t] == f[P[t], B[t]] - i[t],
P'[t] ==
P[t] (1 - A[[1, 1]] P[t] - A[[1, 2]] B[t] - A[[1, 3]] i[t]),
B'[t] == B[t] (1 - A[[2, 2]] B[t] - A[[2, 3]] i[t])};

(* Simulation *)
With[{ttmax = tmax},
sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,
i[0] == init0}}, {P, B, i}, {t, 0, ttmax}, {init1, init2,
init0}]];

(* Plots I am having trouble with *)
(* Cannot plot the first component of multiple solutions. *)
ParametricPlot[{t,
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)][[All,
1]]}, {t, 0, tmax}, PlotRange -> All]

(* Takes the norm of all solutions. Does not plot the norms of the
three different solutions. *)
ParametricPlot[{t,
Norm[Evaluate[
Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)]]}, {t, 0,
tmax}, PlotRange -> All]

(* This plot works as attended. *)
trajectoriesPlot =
ParametricPlot3D[
Evaluate[Through /@ (sol[#[[1]], #[[2]], #[[3]]][t] & /@ set)], {t,
0, tmax}, PlotRange -> All]






plotting differential-equations syntax






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked yesterday









AzJAzJ

34518




34518












  • $begingroup$
    I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
    $endgroup$
    – AzJ
    yesterday


















  • $begingroup$
    I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
    $endgroup$
    – AzJ
    yesterday
















$begingroup$
I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
$endgroup$
– AzJ
yesterday




$begingroup$
I am looking for the default Euclidean norm e.g. $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ not $||(P_1,B_1,I_3)||=|P_1|+|B_1|+|I_3| or anything else. Abs does not give the magnitude of a vector.
$endgroup$
– AzJ
yesterday










2 Answers
2






active

oldest

votes


















4












$begingroup$



  • plot the norm of the solutions of a differential equation system versus time.




Plot[Evaluate@(Norm[Through[sol[## & @@ #][t]]] & /@ set), {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> Large,
PlotLegends -> Placed[ToString /@ set, Top],
PlotLabel -> (Norm[{P[t], B[t], i[t]}])]


enter image description here





  • plot one component of the solutions of a differential equation system versus time.






Row[ParametricPlot[Evaluate@Thread[{t, (Through[sol[## & @@ #][t]] & /@ set)[[All, #]]}], 
{t, 0, tmax}, PlotRange -> All,
PlotLegends -> Placed[set[[All, #]], Top] , AspectRatio -> 1,
ImageSize -> 300, PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1,
2, 3}, Spacer[5]]


enter image description here



Alternatively, you can use Plot:



Row[Plot[Evaluate@(Through[sol[## & @@ #][t]] & /@ set)[[All, #]], {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> 300,
PlotLegends -> Placed[set[[All, #]], Top] ,
PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1, 2, 3}, Spacer[5]]


enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    I really like this solution exactly what I was looking for and more.
    $endgroup$
    – AzJ
    yesterday



















2












$begingroup$

sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,i[0] == init0}}, {P[t], B[t], i[t]}, {t, 0, tmax}, {init1, init2,init0}]


plot of solutions:



Plot[Table[# &[ Apply[sol, set[[i]]]]  , {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]


plot of euclidean norm:



Plot[Table[Sqrt[ #.#] &[ Apply[sol, set[[i]]] ], {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]





share|improve this answer











$endgroup$













  • $begingroup$
    This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    My plot shows 3x3 solutions as you asked for!
    $endgroup$
    – Ulrich Neumann
    yesterday










  • $begingroup$
    Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
    $endgroup$
    – AzJ
    yesterday












  • $begingroup$
    Thanks for your corrected answer
    $endgroup$
    – AzJ
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f190949%2ftrying-to-plot-the-norm-of-the-solutions-to-ndsolve%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$



  • plot the norm of the solutions of a differential equation system versus time.




Plot[Evaluate@(Norm[Through[sol[## & @@ #][t]]] & /@ set), {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> Large,
PlotLegends -> Placed[ToString /@ set, Top],
PlotLabel -> (Norm[{P[t], B[t], i[t]}])]


enter image description here





  • plot one component of the solutions of a differential equation system versus time.






Row[ParametricPlot[Evaluate@Thread[{t, (Through[sol[## & @@ #][t]] & /@ set)[[All, #]]}], 
{t, 0, tmax}, PlotRange -> All,
PlotLegends -> Placed[set[[All, #]], Top] , AspectRatio -> 1,
ImageSize -> 300, PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1,
2, 3}, Spacer[5]]


enter image description here



Alternatively, you can use Plot:



Row[Plot[Evaluate@(Through[sol[## & @@ #][t]] & /@ set)[[All, #]], {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> 300,
PlotLegends -> Placed[set[[All, #]], Top] ,
PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1, 2, 3}, Spacer[5]]


enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    I really like this solution exactly what I was looking for and more.
    $endgroup$
    – AzJ
    yesterday
















4












$begingroup$



  • plot the norm of the solutions of a differential equation system versus time.




Plot[Evaluate@(Norm[Through[sol[## & @@ #][t]]] & /@ set), {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> Large,
PlotLegends -> Placed[ToString /@ set, Top],
PlotLabel -> (Norm[{P[t], B[t], i[t]}])]


enter image description here





  • plot one component of the solutions of a differential equation system versus time.






Row[ParametricPlot[Evaluate@Thread[{t, (Through[sol[## & @@ #][t]] & /@ set)[[All, #]]}], 
{t, 0, tmax}, PlotRange -> All,
PlotLegends -> Placed[set[[All, #]], Top] , AspectRatio -> 1,
ImageSize -> 300, PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1,
2, 3}, Spacer[5]]


enter image description here



Alternatively, you can use Plot:



Row[Plot[Evaluate@(Through[sol[## & @@ #][t]] & /@ set)[[All, #]], {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> 300,
PlotLegends -> Placed[set[[All, #]], Top] ,
PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1, 2, 3}, Spacer[5]]


enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    I really like this solution exactly what I was looking for and more.
    $endgroup$
    – AzJ
    yesterday














4












4








4





$begingroup$



  • plot the norm of the solutions of a differential equation system versus time.




Plot[Evaluate@(Norm[Through[sol[## & @@ #][t]]] & /@ set), {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> Large,
PlotLegends -> Placed[ToString /@ set, Top],
PlotLabel -> (Norm[{P[t], B[t], i[t]}])]


enter image description here





  • plot one component of the solutions of a differential equation system versus time.






Row[ParametricPlot[Evaluate@Thread[{t, (Through[sol[## & @@ #][t]] & /@ set)[[All, #]]}], 
{t, 0, tmax}, PlotRange -> All,
PlotLegends -> Placed[set[[All, #]], Top] , AspectRatio -> 1,
ImageSize -> 300, PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1,
2, 3}, Spacer[5]]


enter image description here



Alternatively, you can use Plot:



Row[Plot[Evaluate@(Through[sol[## & @@ #][t]] & /@ set)[[All, #]], {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> 300,
PlotLegends -> Placed[set[[All, #]], Top] ,
PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1, 2, 3}, Spacer[5]]


enter image description here






share|improve this answer











$endgroup$





  • plot the norm of the solutions of a differential equation system versus time.




Plot[Evaluate@(Norm[Through[sol[## & @@ #][t]]] & /@ set), {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> Large,
PlotLegends -> Placed[ToString /@ set, Top],
PlotLabel -> (Norm[{P[t], B[t], i[t]}])]


enter image description here





  • plot one component of the solutions of a differential equation system versus time.






Row[ParametricPlot[Evaluate@Thread[{t, (Through[sol[## & @@ #][t]] & /@ set)[[All, #]]}], 
{t, 0, tmax}, PlotRange -> All,
PlotLegends -> Placed[set[[All, #]], Top] , AspectRatio -> 1,
ImageSize -> 300, PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1,
2, 3}, Spacer[5]]


enter image description here



Alternatively, you can use Plot:



Row[Plot[Evaluate@(Through[sol[## & @@ #][t]] & /@ set)[[All, #]], {t, 0, tmax}, 
PlotRange -> All, AspectRatio -> 1, ImageSize -> 300,
PlotLegends -> Placed[set[[All, #]], Top] ,
PlotLabel -> ({P[t], B[t], i[t]}[[#]])] & /@ {1, 2, 3}, Spacer[5]]


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited yesterday

























answered yesterday









kglrkglr

182k10200414




182k10200414








  • 1




    $begingroup$
    I really like this solution exactly what I was looking for and more.
    $endgroup$
    – AzJ
    yesterday














  • 1




    $begingroup$
    I really like this solution exactly what I was looking for and more.
    $endgroup$
    – AzJ
    yesterday








1




1




$begingroup$
I really like this solution exactly what I was looking for and more.
$endgroup$
– AzJ
yesterday




$begingroup$
I really like this solution exactly what I was looking for and more.
$endgroup$
– AzJ
yesterday











2












$begingroup$

sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,i[0] == init0}}, {P[t], B[t], i[t]}, {t, 0, tmax}, {init1, init2,init0}]


plot of solutions:



Plot[Table[# &[ Apply[sol, set[[i]]]]  , {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]


plot of euclidean norm:



Plot[Table[Sqrt[ #.#] &[ Apply[sol, set[[i]]] ], {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]





share|improve this answer











$endgroup$













  • $begingroup$
    This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    My plot shows 3x3 solutions as you asked for!
    $endgroup$
    – Ulrich Neumann
    yesterday










  • $begingroup$
    Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
    $endgroup$
    – AzJ
    yesterday












  • $begingroup$
    Thanks for your corrected answer
    $endgroup$
    – AzJ
    yesterday
















2












$begingroup$

sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,i[0] == init0}}, {P[t], B[t], i[t]}, {t, 0, tmax}, {init1, init2,init0}]


plot of solutions:



Plot[Table[# &[ Apply[sol, set[[i]]]]  , {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]


plot of euclidean norm:



Plot[Table[Sqrt[ #.#] &[ Apply[sol, set[[i]]] ], {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]





share|improve this answer











$endgroup$













  • $begingroup$
    This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    My plot shows 3x3 solutions as you asked for!
    $endgroup$
    – Ulrich Neumann
    yesterday










  • $begingroup$
    Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
    $endgroup$
    – AzJ
    yesterday












  • $begingroup$
    Thanks for your corrected answer
    $endgroup$
    – AzJ
    yesterday














2












2








2





$begingroup$

sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,i[0] == init0}}, {P[t], B[t], i[t]}, {t, 0, tmax}, {init1, init2,init0}]


plot of solutions:



Plot[Table[# &[ Apply[sol, set[[i]]]]  , {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]


plot of euclidean norm:



Plot[Table[Sqrt[ #.#] &[ Apply[sol, set[[i]]] ], {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]





share|improve this answer











$endgroup$



sol = ParametricNDSolveValue[{ODEsys, {P[0] == init1, B[0] == init2,i[0] == init0}}, {P[t], B[t], i[t]}, {t, 0, tmax}, {init1, init2,init0}]


plot of solutions:



Plot[Table[# &[ Apply[sol, set[[i]]]]  , {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]


plot of euclidean norm:



Plot[Table[Sqrt[ #.#] &[ Apply[sol, set[[i]]] ], {i, 1, Length[set]}] , {t, 0,tmax}, PlotRange -> {0, Automatic}]






share|improve this answer














share|improve this answer



share|improve this answer








edited yesterday

























answered yesterday









Ulrich NeumannUlrich Neumann

8,637516




8,637516












  • $begingroup$
    This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    My plot shows 3x3 solutions as you asked for!
    $endgroup$
    – Ulrich Neumann
    yesterday










  • $begingroup$
    Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
    $endgroup$
    – AzJ
    yesterday












  • $begingroup$
    Thanks for your corrected answer
    $endgroup$
    – AzJ
    yesterday


















  • $begingroup$
    This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    My plot shows 3x3 solutions as you asked for!
    $endgroup$
    – Ulrich Neumann
    yesterday










  • $begingroup$
    Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
    $endgroup$
    – AzJ
    yesterday










  • $begingroup$
    If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
    $endgroup$
    – AzJ
    yesterday












  • $begingroup$
    Thanks for your corrected answer
    $endgroup$
    – AzJ
    yesterday
















$begingroup$
This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
$endgroup$
– AzJ
yesterday




$begingroup$
This does not answer my question for my reasons. First something like Plot[Table[Map[#[t] &, Apply[sol, set[[i]]]], {i, 2, 2}], {t, 0,tmax}] does not plot all of the second components of all the solutions. It plots all the components of the second solution. Next I meant Euclidean Norm, not some other norm (I thought it was self evident as that is the default used by Mathematica when given a vector). Playing around with your code snippet I haven't been able to get the desired result
$endgroup$
– AzJ
yesterday












$begingroup$
My plot shows 3x3 solutions as you asked for!
$endgroup$
– Ulrich Neumann
yesterday




$begingroup$
My plot shows 3x3 solutions as you asked for!
$endgroup$
– Ulrich Neumann
yesterday












$begingroup$
Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
$endgroup$
– AzJ
yesterday




$begingroup$
Sorry my terminology may have confused you. For the context of my problem as I am solving a system of ODEs one function (for example $P(t)$) is a component of the solution $(P(t),B(t),I(t))$.
$endgroup$
– AzJ
yesterday












$begingroup$
If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
$endgroup$
– AzJ
yesterday






$begingroup$
If I have three solutions $(P_1,B_1,I_1)$,$(P_2,B_2,I_2)$,$(P_3,B_3,I_3)$ (with the difference being they start at different initial conditions), I am looking for plots of the following (as examples): $P_1,P_2,P_3$ versus time, and $||(P_1,B_1,I_3)||=sqrt{P_1^2+B_1^2+I_3^2}$ versus time.
$endgroup$
– AzJ
yesterday














$begingroup$
Thanks for your corrected answer
$endgroup$
– AzJ
yesterday




$begingroup$
Thanks for your corrected answer
$endgroup$
– AzJ
yesterday


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f190949%2ftrying-to-plot-the-norm-of-the-solutions-to-ndsolve%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

"Incorrect syntax near the keyword 'ON'. (on update cascade, on delete cascade,)

Alcedinidae

RAC Tourist Trophy