A curious inequality concerning binomial coefficients












8












$begingroup$


Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.



Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
$$
sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
$$

The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.










share|cite|improve this question









$endgroup$

















    8












    $begingroup$


    Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.



    Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
    $$
    sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
    $$

    The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.










    share|cite|improve this question









    $endgroup$















      8












      8








      8


      1



      $begingroup$


      Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.



      Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
      $$
      sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
      $$

      The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.










      share|cite|improve this question









      $endgroup$




      Has anyone seen an inequality of this form before? It seems to be true (based on extensive testing), but I am not able to prove it.



      Let $a_1,a_2,ldots,a_k$ be non-negative integers such that $sum_i a_i = A$. Then, for any non-negative integer $B le A$:
      $$
      sum_{(b_1,ldots,b_k): sum_i b_i = B} prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}} ge {binom{A}{B}}^{2-k}.
      $$

      The sum on the left is over all tuples $(b_1,b_2,ldots,b_k)$ of non-negative integers, with $b_i le a_i$ for all $i$, whose sum is equal to $B$.







      inequalities binomial-coefficients






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 13 hours ago









      Navin K.Navin K.

      682




      682






















          1 Answer
          1






          active

          oldest

          votes


















          12












          $begingroup$

          By Cauchy–Bunyakovsky–Schwarz inequality we have
          $$
          left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
          left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
          .$$



          Thus it suffices to prove that
          $$
          sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
          $$

          But RHS is just the sum of the same guys without the restriction $sum b_i=B$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Brilliant! Thank you.
            $endgroup$
            – Navin K.
            5 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "504"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325354%2fa-curious-inequality-concerning-binomial-coefficients%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          12












          $begingroup$

          By Cauchy–Bunyakovsky–Schwarz inequality we have
          $$
          left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
          left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
          .$$



          Thus it suffices to prove that
          $$
          sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
          $$

          But RHS is just the sum of the same guys without the restriction $sum b_i=B$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Brilliant! Thank you.
            $endgroup$
            – Navin K.
            5 hours ago
















          12












          $begingroup$

          By Cauchy–Bunyakovsky–Schwarz inequality we have
          $$
          left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
          left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
          .$$



          Thus it suffices to prove that
          $$
          sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
          $$

          But RHS is just the sum of the same guys without the restriction $sum b_i=B$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Brilliant! Thank you.
            $endgroup$
            – Navin K.
            5 hours ago














          12












          12








          12





          $begingroup$

          By Cauchy–Bunyakovsky–Schwarz inequality we have
          $$
          left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
          left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
          .$$



          Thus it suffices to prove that
          $$
          sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
          $$

          But RHS is just the sum of the same guys without the restriction $sum b_i=B$.






          share|cite|improve this answer









          $endgroup$



          By Cauchy–Bunyakovsky–Schwarz inequality we have
          $$
          left(sum prod_i frac{binom{a_i}{b_i}}{binom{A-a_i}{B-b_i}}right)left(sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}right)geqslant
          left(sum prod_ibinom{a_i}{b_i}right)^2=binom{A}{B}^2
          .$$



          Thus it suffices to prove that
          $$
          sumprod_i binom{a_i}{b_i}binom{A-a_i}{B-b_i}leqslant binom{A}B^k.
          $$

          But RHS is just the sum of the same guys without the restriction $sum b_i=B$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 11 hours ago









          Fedor PetrovFedor Petrov

          50.8k6117233




          50.8k6117233












          • $begingroup$
            Brilliant! Thank you.
            $endgroup$
            – Navin K.
            5 hours ago


















          • $begingroup$
            Brilliant! Thank you.
            $endgroup$
            – Navin K.
            5 hours ago
















          $begingroup$
          Brilliant! Thank you.
          $endgroup$
          – Navin K.
          5 hours ago




          $begingroup$
          Brilliant! Thank you.
          $endgroup$
          – Navin K.
          5 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325354%2fa-curious-inequality-concerning-binomial-coefficients%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          If I really need a card on my start hand, how many mulligans make sense? [duplicate]

          Alcedinidae

          Can an atomic nucleus contain both particles and antiparticles? [duplicate]