Why is this estimator biased?
$begingroup$
$X_{1},X_{2},..,X_{n}$ are iid $sim Poisson(mu)$
than the MLE for $theta=e^{-mu}$ is $hat theta =e^{-bar x}$
Why is this considered to be biased for $theta$?
Is $E[hat theta]$ not $theta$ ?
as
$E[bar x]= mu$
estimation poisson-distribution bias
$endgroup$
add a comment |
$begingroup$
$X_{1},X_{2},..,X_{n}$ are iid $sim Poisson(mu)$
than the MLE for $theta=e^{-mu}$ is $hat theta =e^{-bar x}$
Why is this considered to be biased for $theta$?
Is $E[hat theta]$ not $theta$ ?
as
$E[bar x]= mu$
estimation poisson-distribution bias
$endgroup$
6
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01
add a comment |
$begingroup$
$X_{1},X_{2},..,X_{n}$ are iid $sim Poisson(mu)$
than the MLE for $theta=e^{-mu}$ is $hat theta =e^{-bar x}$
Why is this considered to be biased for $theta$?
Is $E[hat theta]$ not $theta$ ?
as
$E[bar x]= mu$
estimation poisson-distribution bias
$endgroup$
$X_{1},X_{2},..,X_{n}$ are iid $sim Poisson(mu)$
than the MLE for $theta=e^{-mu}$ is $hat theta =e^{-bar x}$
Why is this considered to be biased for $theta$?
Is $E[hat theta]$ not $theta$ ?
as
$E[bar x]= mu$
estimation poisson-distribution bias
estimation poisson-distribution bias
asked Mar 22 at 20:47
QualityQuality
30019
30019
6
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01
add a comment |
6
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01
6
6
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Recall that the moment generating function of $X sim operatorname{Poisson}(mu)$ is
$$
E[e^{s X}] = exp(mu(e^s - 1))
$$
for all $s in mathbb{R}$
Proof.
We just compute:
$$
begin{aligned}
E[e^{s X}]
&= sum_{k=0}^infty e^{s k} e^{-mu} frac{mu^k}{k!} \
&= e^{-mu} sum_{k=0}^infty frac{left(mu e^sright)^k}{k!} \
&= e^{-mu} e^{mu e^s} \
&= exp(mu(e^s - 1)).
end{aligned}
$$
We will use this result with $s = -1/n$.
If $X_1, ldots, X_n sim operatorname{Poisson}(mu)$ are i.i.d. and
$$
widehat{theta}
= expleft(-frac{1}{n} sum_{i=1}^n X_iright)
= prod_{i=1}^n expleft(-frac{X_i}{n}right),
$$
then, using independence,
$$
begin{aligned}
E[widehat{theta}]
&= prod_{i=1}^n Eleft[e^{-X_i / n}right] \
&= prod_{i=1}^n exp(mu(e^{-1/n} - 1)) \
&= exp(n mu(e^{-1/n} - 1)) \
&neq e^{-mu},
end{aligned}
$$
so $widehat{theta}$ is not an unbiased estimator of $e^{-mu}$
$endgroup$
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
add a comment |
$begingroup$
As an aside from finding the exact expectation, you can use Jensen's inequality, which says that for a random variable $X$ and a convex function $g$,
$$Eleft[g(X)right]ge gleft(Eleft[Xright]right)$$
, provided the expectations exist.
Verify that $g(x)=e^{-x}$ is a convex function from the fact that $g''>0$.
The equality does not hold because $g$ is not an affine function or a constant function.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398954%2fwhy-is-this-estimator-biased%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that the moment generating function of $X sim operatorname{Poisson}(mu)$ is
$$
E[e^{s X}] = exp(mu(e^s - 1))
$$
for all $s in mathbb{R}$
Proof.
We just compute:
$$
begin{aligned}
E[e^{s X}]
&= sum_{k=0}^infty e^{s k} e^{-mu} frac{mu^k}{k!} \
&= e^{-mu} sum_{k=0}^infty frac{left(mu e^sright)^k}{k!} \
&= e^{-mu} e^{mu e^s} \
&= exp(mu(e^s - 1)).
end{aligned}
$$
We will use this result with $s = -1/n$.
If $X_1, ldots, X_n sim operatorname{Poisson}(mu)$ are i.i.d. and
$$
widehat{theta}
= expleft(-frac{1}{n} sum_{i=1}^n X_iright)
= prod_{i=1}^n expleft(-frac{X_i}{n}right),
$$
then, using independence,
$$
begin{aligned}
E[widehat{theta}]
&= prod_{i=1}^n Eleft[e^{-X_i / n}right] \
&= prod_{i=1}^n exp(mu(e^{-1/n} - 1)) \
&= exp(n mu(e^{-1/n} - 1)) \
&neq e^{-mu},
end{aligned}
$$
so $widehat{theta}$ is not an unbiased estimator of $e^{-mu}$
$endgroup$
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
add a comment |
$begingroup$
Recall that the moment generating function of $X sim operatorname{Poisson}(mu)$ is
$$
E[e^{s X}] = exp(mu(e^s - 1))
$$
for all $s in mathbb{R}$
Proof.
We just compute:
$$
begin{aligned}
E[e^{s X}]
&= sum_{k=0}^infty e^{s k} e^{-mu} frac{mu^k}{k!} \
&= e^{-mu} sum_{k=0}^infty frac{left(mu e^sright)^k}{k!} \
&= e^{-mu} e^{mu e^s} \
&= exp(mu(e^s - 1)).
end{aligned}
$$
We will use this result with $s = -1/n$.
If $X_1, ldots, X_n sim operatorname{Poisson}(mu)$ are i.i.d. and
$$
widehat{theta}
= expleft(-frac{1}{n} sum_{i=1}^n X_iright)
= prod_{i=1}^n expleft(-frac{X_i}{n}right),
$$
then, using independence,
$$
begin{aligned}
E[widehat{theta}]
&= prod_{i=1}^n Eleft[e^{-X_i / n}right] \
&= prod_{i=1}^n exp(mu(e^{-1/n} - 1)) \
&= exp(n mu(e^{-1/n} - 1)) \
&neq e^{-mu},
end{aligned}
$$
so $widehat{theta}$ is not an unbiased estimator of $e^{-mu}$
$endgroup$
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
add a comment |
$begingroup$
Recall that the moment generating function of $X sim operatorname{Poisson}(mu)$ is
$$
E[e^{s X}] = exp(mu(e^s - 1))
$$
for all $s in mathbb{R}$
Proof.
We just compute:
$$
begin{aligned}
E[e^{s X}]
&= sum_{k=0}^infty e^{s k} e^{-mu} frac{mu^k}{k!} \
&= e^{-mu} sum_{k=0}^infty frac{left(mu e^sright)^k}{k!} \
&= e^{-mu} e^{mu e^s} \
&= exp(mu(e^s - 1)).
end{aligned}
$$
We will use this result with $s = -1/n$.
If $X_1, ldots, X_n sim operatorname{Poisson}(mu)$ are i.i.d. and
$$
widehat{theta}
= expleft(-frac{1}{n} sum_{i=1}^n X_iright)
= prod_{i=1}^n expleft(-frac{X_i}{n}right),
$$
then, using independence,
$$
begin{aligned}
E[widehat{theta}]
&= prod_{i=1}^n Eleft[e^{-X_i / n}right] \
&= prod_{i=1}^n exp(mu(e^{-1/n} - 1)) \
&= exp(n mu(e^{-1/n} - 1)) \
&neq e^{-mu},
end{aligned}
$$
so $widehat{theta}$ is not an unbiased estimator of $e^{-mu}$
$endgroup$
Recall that the moment generating function of $X sim operatorname{Poisson}(mu)$ is
$$
E[e^{s X}] = exp(mu(e^s - 1))
$$
for all $s in mathbb{R}$
Proof.
We just compute:
$$
begin{aligned}
E[e^{s X}]
&= sum_{k=0}^infty e^{s k} e^{-mu} frac{mu^k}{k!} \
&= e^{-mu} sum_{k=0}^infty frac{left(mu e^sright)^k}{k!} \
&= e^{-mu} e^{mu e^s} \
&= exp(mu(e^s - 1)).
end{aligned}
$$
We will use this result with $s = -1/n$.
If $X_1, ldots, X_n sim operatorname{Poisson}(mu)$ are i.i.d. and
$$
widehat{theta}
= expleft(-frac{1}{n} sum_{i=1}^n X_iright)
= prod_{i=1}^n expleft(-frac{X_i}{n}right),
$$
then, using independence,
$$
begin{aligned}
E[widehat{theta}]
&= prod_{i=1}^n Eleft[e^{-X_i / n}right] \
&= prod_{i=1}^n exp(mu(e^{-1/n} - 1)) \
&= exp(n mu(e^{-1/n} - 1)) \
&neq e^{-mu},
end{aligned}
$$
so $widehat{theta}$ is not an unbiased estimator of $e^{-mu}$
answered Mar 22 at 21:12
Artem MavrinArtem Mavrin
1,211710
1,211710
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
add a comment |
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
$begingroup$
Thank you, makes perfect sense
$endgroup$
– Quality
Mar 22 at 21:16
add a comment |
$begingroup$
As an aside from finding the exact expectation, you can use Jensen's inequality, which says that for a random variable $X$ and a convex function $g$,
$$Eleft[g(X)right]ge gleft(Eleft[Xright]right)$$
, provided the expectations exist.
Verify that $g(x)=e^{-x}$ is a convex function from the fact that $g''>0$.
The equality does not hold because $g$ is not an affine function or a constant function.
$endgroup$
add a comment |
$begingroup$
As an aside from finding the exact expectation, you can use Jensen's inequality, which says that for a random variable $X$ and a convex function $g$,
$$Eleft[g(X)right]ge gleft(Eleft[Xright]right)$$
, provided the expectations exist.
Verify that $g(x)=e^{-x}$ is a convex function from the fact that $g''>0$.
The equality does not hold because $g$ is not an affine function or a constant function.
$endgroup$
add a comment |
$begingroup$
As an aside from finding the exact expectation, you can use Jensen's inequality, which says that for a random variable $X$ and a convex function $g$,
$$Eleft[g(X)right]ge gleft(Eleft[Xright]right)$$
, provided the expectations exist.
Verify that $g(x)=e^{-x}$ is a convex function from the fact that $g''>0$.
The equality does not hold because $g$ is not an affine function or a constant function.
$endgroup$
As an aside from finding the exact expectation, you can use Jensen's inequality, which says that for a random variable $X$ and a convex function $g$,
$$Eleft[g(X)right]ge gleft(Eleft[Xright]right)$$
, provided the expectations exist.
Verify that $g(x)=e^{-x}$ is a convex function from the fact that $g''>0$.
The equality does not hold because $g$ is not an affine function or a constant function.
answered Mar 22 at 21:16
StubbornAtomStubbornAtom
2,8621532
2,8621532
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f398954%2fwhy-is-this-estimator-biased%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
E[f(X)] != f(E[X]) in general.
$endgroup$
– The Laconic
Mar 22 at 20:54
$begingroup$
I know that general result but I am still confused how to do it here since the sum of poisson is also poisson with mean $n mu$
$endgroup$
– Quality
Mar 22 at 21:01