Spark Streaming: Avoid multiple calls to DB
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I have a Spark structured streaming which reads UI events from a couple of busy Kafka topics.
Current flow is like this:
- Spark stream reads the Kafka offsets
- For every offset it goes to the database and maps one of values coming from the topic to another value.
- Aggregates the data
- Writes the data to the same database.
Facing this issue where after running 10-12 hours it throws too many db connection open
error. It only does it for Step 2.
Using Aerospike Database for this Spark job.
Is there a way to optimize this flow? Is there calls to database can be reduced?
Read data:
sparkSession.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBootstrapServersString)
.option("subscribe", newTopic)
.option("startingOffsets", "latest")
.option("enable.auto.commit", false)
.option("failOnDataLoss", false)
.load();
Map a value from database and aggregate data:
dataset
.map(
new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
objects[1] = aerospikeDao.getSomeValueFromCode(row.getAs("code"));
return new GenericRowWithSchema(objects, eventSpecificStructType);
}
},
RowEncoder.apply(eventSpecificStructType)
)
.withWatermark("timestamp", "30 seconds")
.select(
col("timestamp"),
col("platform"),
col("some_value")
)
.groupBy(
functions.window(col("timestamp"), "30 seconds"),
col("platform"),
col("some_value")
)
.agg(
count(lit(1)).as("count")
);
Writing to the database:
aggregatedDataset
.writeStream()
.option("startingOffsets", "earliest")
.outputMode(OutputMode.Append())
.foreach(sink)
.trigger(Trigger.ProcessingTime("30 seconds"))
.start();
DAO:
public AerospikeClient connect() {
if (aerospikeClient == null || !aerospikeClient.isConnected()) {
setAerospikeClient();
}
return this.aerospikeClient;
}
public void close() {
if (aerospikeClient != null && aerospikeClient.isConnected()) {
aerospikeClient.close();
}
}
public String getSomeValueFromCode(String code) {
connet();
Record record = aerospikeClient.get(Policy, key, "SomeValue");
close();
return channel;
}
java apache-spark spark-streaming spark-structured-streaming aerospike
add a comment |
I have a Spark structured streaming which reads UI events from a couple of busy Kafka topics.
Current flow is like this:
- Spark stream reads the Kafka offsets
- For every offset it goes to the database and maps one of values coming from the topic to another value.
- Aggregates the data
- Writes the data to the same database.
Facing this issue where after running 10-12 hours it throws too many db connection open
error. It only does it for Step 2.
Using Aerospike Database for this Spark job.
Is there a way to optimize this flow? Is there calls to database can be reduced?
Read data:
sparkSession.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBootstrapServersString)
.option("subscribe", newTopic)
.option("startingOffsets", "latest")
.option("enable.auto.commit", false)
.option("failOnDataLoss", false)
.load();
Map a value from database and aggregate data:
dataset
.map(
new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
objects[1] = aerospikeDao.getSomeValueFromCode(row.getAs("code"));
return new GenericRowWithSchema(objects, eventSpecificStructType);
}
},
RowEncoder.apply(eventSpecificStructType)
)
.withWatermark("timestamp", "30 seconds")
.select(
col("timestamp"),
col("platform"),
col("some_value")
)
.groupBy(
functions.window(col("timestamp"), "30 seconds"),
col("platform"),
col("some_value")
)
.agg(
count(lit(1)).as("count")
);
Writing to the database:
aggregatedDataset
.writeStream()
.option("startingOffsets", "earliest")
.outputMode(OutputMode.Append())
.foreach(sink)
.trigger(Trigger.ProcessingTime("30 seconds"))
.start();
DAO:
public AerospikeClient connect() {
if (aerospikeClient == null || !aerospikeClient.isConnected()) {
setAerospikeClient();
}
return this.aerospikeClient;
}
public void close() {
if (aerospikeClient != null && aerospikeClient.isConnected()) {
aerospikeClient.close();
}
}
public String getSomeValueFromCode(String code) {
connet();
Record record = aerospikeClient.get(Policy, key, "SomeValue");
close();
return channel;
}
java apache-spark spark-streaming spark-structured-streaming aerospike
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51
add a comment |
I have a Spark structured streaming which reads UI events from a couple of busy Kafka topics.
Current flow is like this:
- Spark stream reads the Kafka offsets
- For every offset it goes to the database and maps one of values coming from the topic to another value.
- Aggregates the data
- Writes the data to the same database.
Facing this issue where after running 10-12 hours it throws too many db connection open
error. It only does it for Step 2.
Using Aerospike Database for this Spark job.
Is there a way to optimize this flow? Is there calls to database can be reduced?
Read data:
sparkSession.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBootstrapServersString)
.option("subscribe", newTopic)
.option("startingOffsets", "latest")
.option("enable.auto.commit", false)
.option("failOnDataLoss", false)
.load();
Map a value from database and aggregate data:
dataset
.map(
new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
objects[1] = aerospikeDao.getSomeValueFromCode(row.getAs("code"));
return new GenericRowWithSchema(objects, eventSpecificStructType);
}
},
RowEncoder.apply(eventSpecificStructType)
)
.withWatermark("timestamp", "30 seconds")
.select(
col("timestamp"),
col("platform"),
col("some_value")
)
.groupBy(
functions.window(col("timestamp"), "30 seconds"),
col("platform"),
col("some_value")
)
.agg(
count(lit(1)).as("count")
);
Writing to the database:
aggregatedDataset
.writeStream()
.option("startingOffsets", "earliest")
.outputMode(OutputMode.Append())
.foreach(sink)
.trigger(Trigger.ProcessingTime("30 seconds"))
.start();
DAO:
public AerospikeClient connect() {
if (aerospikeClient == null || !aerospikeClient.isConnected()) {
setAerospikeClient();
}
return this.aerospikeClient;
}
public void close() {
if (aerospikeClient != null && aerospikeClient.isConnected()) {
aerospikeClient.close();
}
}
public String getSomeValueFromCode(String code) {
connet();
Record record = aerospikeClient.get(Policy, key, "SomeValue");
close();
return channel;
}
java apache-spark spark-streaming spark-structured-streaming aerospike
I have a Spark structured streaming which reads UI events from a couple of busy Kafka topics.
Current flow is like this:
- Spark stream reads the Kafka offsets
- For every offset it goes to the database and maps one of values coming from the topic to another value.
- Aggregates the data
- Writes the data to the same database.
Facing this issue where after running 10-12 hours it throws too many db connection open
error. It only does it for Step 2.
Using Aerospike Database for this Spark job.
Is there a way to optimize this flow? Is there calls to database can be reduced?
Read data:
sparkSession.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBootstrapServersString)
.option("subscribe", newTopic)
.option("startingOffsets", "latest")
.option("enable.auto.commit", false)
.option("failOnDataLoss", false)
.load();
Map a value from database and aggregate data:
dataset
.map(
new MapFunction<Row, Row>() {
@Override
public Row call(Row row) throws Exception {
objects[1] = aerospikeDao.getSomeValueFromCode(row.getAs("code"));
return new GenericRowWithSchema(objects, eventSpecificStructType);
}
},
RowEncoder.apply(eventSpecificStructType)
)
.withWatermark("timestamp", "30 seconds")
.select(
col("timestamp"),
col("platform"),
col("some_value")
)
.groupBy(
functions.window(col("timestamp"), "30 seconds"),
col("platform"),
col("some_value")
)
.agg(
count(lit(1)).as("count")
);
Writing to the database:
aggregatedDataset
.writeStream()
.option("startingOffsets", "earliest")
.outputMode(OutputMode.Append())
.foreach(sink)
.trigger(Trigger.ProcessingTime("30 seconds"))
.start();
DAO:
public AerospikeClient connect() {
if (aerospikeClient == null || !aerospikeClient.isConnected()) {
setAerospikeClient();
}
return this.aerospikeClient;
}
public void close() {
if (aerospikeClient != null && aerospikeClient.isConnected()) {
aerospikeClient.close();
}
}
public String getSomeValueFromCode(String code) {
connet();
Record record = aerospikeClient.get(Policy, key, "SomeValue");
close();
return channel;
}
java apache-spark spark-streaming spark-structured-streaming aerospike
java apache-spark spark-streaming spark-structured-streaming aerospike
edited Nov 23 '18 at 17:48
user6910411
36.1k1091113
36.1k1091113
asked Nov 23 '18 at 17:12
Himanshu YadavHimanshu Yadav
6,03634121228
6,03634121228
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51
add a comment |
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450678%2fspark-streaming-avoid-multiple-calls-to-db%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450678%2fspark-streaming-avoid-multiple-calls-to-db%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Isn't that because some lagging micro batches are piling up?
– user6910411
Nov 23 '18 at 17:51